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Abstract
We introduce the concept of semantic fast-forwarding of video streams for
efficient labeling of training data for activity recognition. We show that
this concept can be realized by combining deep learning within individual
frames, with spatial and temporal entity-relationship reasoning about de-
tected objects. We describe a prototype that implements this concept, and
present preliminary experimental results on its feasibility and value.

CCSConcepts: •Human-centered computing→ Interactive sys-
tems and tools; Empirical studies in ubiquitous and mobile computing;
• Computing methodologies→ Computer vision;Machine learn-
ing; • Information systems→ Information retrieval.

Keywords: Eureka, edge computing, activity recognition, search,
deep learning
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1 Introduction
An astonishing amount of video data is captured every day via
smartphones, drones, vehicular cameras, and other sources. In 2020,
it was estimated that 720,000 hours of video are shared online
daily [22]. What will we do with all this video? Its long-term value
as archival data lies in the ability to search it retrospectively. This
implies content-based indexing.

At the granularity of individual video frames, the creation of
object detectors/classifiers based on deep neural networks (DNNs)
is a mostly solved problem. While extensive research continues, the
state of the art is already good enough for practical use. However,
there are some concepts that cannot be reduced to the granularity
of a single frame. They only make sense in a temporal context,
across multiple frames.

Consider the task of finding instances of the event “a person
getting out of a vehicle.” Figures 1(b) and 1(c) show two examples.
A DNN can be created to reliably detect “person” and “vehicle” in
individual frames, but the action of opening a car door to get out is
inherently temporal — Figures 1(b) and 1(c) could equally well show
persons getting into (instead of out of) a car. There are countless
examples of this kind, where the temporal dimension is an integral
aspect of the concept: e.g., pitching a ball in baseball versus bowling
it in cricket; dancing a waltz versus a tango; a fist bump versus
a punch; and so on. Activity Recognition [5, 9, 24, 30] focuses on
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(a) Frame 254 (b) Frame 336 (c) Frame 456
Yellow box: vehicle; Red box: person getting out of vehicle;
Blue box: irrelevant person; Source: VIRAT dataset [18]

Figure 1. Examples of “Get-Out-of-Vehicle” Event

creating DNNs to detect such concepts. Unfortunately, constructing
a training set for activity recognition is painful today. It requires
human labelers to spend many hours watching raw video. Can we
do better? Can we increase their productivity?

In this paper, we introduce the concept of semantic fast-forwarding:
i.e., automatically skipping a long stretch of video that is definitely
irrelevant, and only stopping at the beginning of a plausibly relevant
video segment. Note that “plausibly relevant” is a weak descriptor.
It implies that the human labeler may have to tolerate many false
positives (FPs) relative to the number of true positives (TPs) discov-
ered. But that is better than having to also watch the long irrelevant
stretch of video preceding the FP. Once a large-enough training set
has been assembled, an accurate DNN for activity recognition can
be trained. Our focus is on bootstrapping this training set.

We show that semantic fast-forwarding can be implemented by
unifying two well-known mechanisms:
• DNN-based object detection within individual frames,
• entity-relationship (ER) reasoning about detected objects,
both spatiallywithin individual frames and temporally across
multiple frames.

Unifying these two very different mechanisms, one grounded in
machine learning and the other in classical databases, provides the
right balance of specificity and flexibility needed for expressing
new video concepts. We have built a system called Eureka that
embodies this approach, and present early results in this paper.

2 Modeling Spatial-Temporal Events
Our work focuses on actions that can be characterized as coarse-
grained inter-object spatial-temporal relationships. Complex events
are recursively defined in terms of simpler events. The starting point
is object detection on a single frame, which discovers the simple
event “Presence of object 𝑂 at position (𝑥,𝑦) in frame 𝑡 .” Grouping
all such events temporally across consecutive frames is a tracking
problem, and produces the object’s motion trajectory over time.
This can be interpreted as the complex event: “Object 𝑂 appears in
the video at time-space sequence (𝑡, 𝑥𝑡 , 𝑦𝑡 ), (𝑡+1, 𝑥𝑡+1, 𝑦𝑡+1), . . . , (𝑡+
𝑛, 𝑥𝑡+𝑛, 𝑦𝑡+𝑛).”

Building on this, more complex events can be specified. For
example, we can characterize a “Get-Out-of-Vehicle” event as “An
object of type person first appears from an object of type vehicle
located at (𝑥,𝑦) in frame 𝑡 .” Notice that “from” expresses a spatial
relationship, while “first” expresses a temporal relationship. In
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Figure 3. Complex Event

real-world video data, there are likely many persons and many
vehicles, but few of them constitute the above event. Finding the
matches requires comparing them under a set of constraints. These
constraints may be not only on their time and space, but also on
their visual features and specific instance identities.

The basic abstraction in Eureka is a spatial-temporal interval, ab-
breviated to just “interval.” It can be viewed as the “container” of an
event. It specifies some key-value attribute that remains invariant
throughout a volume defined by a cropped video segment (Figure 2).
This attribute can be any one of a wide of range possibilities such
as: (a) raw pixels arrays representing visual content; (b) feature
vectors computed on the pixel content; (c) meta-data extracted by
computer vision algorithms (e.g., labels and confidence scores); (d)
pointer to another interval instance; or nested structure of any of
the above. An interval stream is a sequence of intervals that are
in ascending order of time. An operator (Table 1) takes interval
stream(s) as input, and outputs interval stream(s). A complex query
can be composed as a DAG (directed acyclic graph) of operators.

Relational map, reduce, filter, sort, join, flatten
Data VideoToFrames, FramesToVideo,
transformation ImageCrop, VideoCrop
Spatial IoU, merge_span, above, below
Temporal during, before, after, coalesce
Visual features RGB color histogram, perceptual

hashing, SIFT key points, image
classification, object detection

Table 1. Example Operators and Predicates

Figure 3(a) through (f) illustrate these steps towards express-
ing the complex query “a person riding a bike during a red traf-
fic light.” DNN-based object detection on individual video frames
produces the atomic events “person instances” (3(a)) and “bike in-
stances” (3(b)). A Join operatorwith the spatial predicate Overlap()
finds matching person-bike pairs that indicate the event “bicy-
clist” (3(c)). Likewise, red lights in individual frames are marked
(3(d)) (based on object detection and color filter) and then coa-
lesced into “periods of red light” (3(e)). Finally, using the temporal
predicate During() to join the “bicyclist” event stream (3(c)) with
the “periods of red light” event stream (3(e)) selects exactly those
bicyclists who ride during a red light (3(f)).

3 Coping with Uncertainty
Classic ER reasoning, based on relational logic, is devoid of un-
certainty. In spite of many efforts to incorporate uncertainty and
probabilistic reasoning into ER models [23], they remain esoteric.
In contrast, DNNs inherently embody uncertainty — the result is
expressed as a distribution of probabilities across classes.

Hence, Eureka offers two different approaches to describing
within-frame relationships. The first approach describes events by
construction. We start by detecting by individual objects, and then
we examine whether they relate to each other in a certain manner.
Figure 4(a) illustrates this approach.

The second approach is guess-and-verify, where the presence of
one object leads to a guess regarding the identity and location of a
second object. This is illustrated in Figure 4(b). This approach has
two advantages. First, we can use image classification instead of
object detection in the verify step. Since classification is typically an
order of magnitude faster than detection, this can be a significant
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Figure 4. Alternative Approaches to Detecting Bicyclist
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speedup. It is also useful in situations where only a classifier, but
not a detector, is available for a target. Second, the verify step only
needs to focus on a small region of interest rather than the whole
frame, making it less prone to clutter in the background.

4 Implementation and Optimization
Eureka separates expression and execution of semantic fast-forward-
ing. Using a GUI, the user (i.e., the human labeler) describes the
desired target concept using the abstractions of Section 2. Like a
database query optimizer, Eureka compiles the query into an exe-
cution plan that optimally utilizes multi-core CPUs, main memory,
and GPUs on multiple servers across which the raw video data
has been sharded. However, Eureka’s goal is not to run a query to
completion in the shortest time, but to present the next result as
soon as possible for the user to inspect and label. Starving the user
of results, or overwhelming her with FPs are both to be avoided. We
describe below the video-specific features that distinguish Eureka
from classic SQL database optimizers.

4.1 Maintaining the Stream Invariant
The interval stream model in Eureka maps natively to live video
processing, as discovered events arrive in temporal order and may
never end. Moreover, maintaining the stream assumption through-
out the system allows for optimized implementation of certain
operators. For example, in the worst case, the Join operator may
produce the Cartesian product of its inputs. Yet, we observe that
the more constrained WindowedJoin operator is sufficient in most
use cases, as one typically wants to relate an event to other events
that happen in proximate time. The WindowedJoin operator only
considers input pairs that are within a small temporal window of
each other. As Algorithm 1 shows, the stream assumption of the
join inputs allows an efficient implementation that only needs to
maintain a small input buffer, and releases obsolete buffered inputs
as soon as new ones run out of their window.

Algorithm 1: Windowed Join of Two Interval Streams
Input : IntervalStream 𝑙𝑒 𝑓 𝑡𝐼𝑛, IntervalStream 𝑟𝑖𝑔ℎ𝑡𝐼𝑛

Input : int 𝑤𝑖𝑛𝑑𝑜𝑤, function 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐹𝑛, function𝑚𝑒𝑟𝑔𝑒𝐹𝑛

𝑙𝑒 𝑓 𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟 ← 𝐿𝑖𝑠𝑡 () ;
𝑟𝑖𝑔ℎ𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟 ← 𝐿𝑖𝑠𝑡 () ;
while True do

// Get a new input from the left upstream

𝑖𝐿 ← 𝑙𝑒 𝑓 𝑡𝐼𝑛.𝑔𝑒𝑡𝑁𝑒𝑥𝑡 () ;
for iR in rightRuffer do

if 𝑖𝑅.𝑡2 < 𝑖𝐿.𝑡1 − 𝑤𝑖𝑛𝑑𝑜𝑤 then
Remove 𝑖𝑅 from 𝑟𝑖𝑔ℎ𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟 ;

else if 𝑖𝑅.𝑡1 < 𝑖𝐿.𝑡2 + 𝑤𝑖𝑛𝑑𝑜𝑤 then
if 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐹𝑛 (𝑖𝐿, 𝑖𝑅) = 𝑇𝑟𝑢𝑒 then

Output(𝑚𝑒𝑟𝑔𝑒𝐹𝑛 (𝑖𝐿, 𝑖𝑅));

𝑙𝑒 𝑓 𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝐿) ;
// Get a new input from the right upstream

𝑖𝑅 = 𝑟𝑖𝑔ℎ𝑡𝐼𝑛.𝑔𝑒𝑡𝑁𝑒𝑥𝑡 () ;
... // Mirror operations above
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Figure 5. Avoiding Redundant Decoding and Seeks

4.2 Exploiting Parallelism
Eureka exploits three levels of parallelism, while remaining con-
strained by sequential dependency between frames:
• First, it exploits inter-file/inter-stream parallelism, by creating
separate instances of the user query for each input file or
live stream, and executes them in parallel.
• Second, it exploits inter-operator parallelism by running each
operator in its own thread. Using a producer-consumer exe-
cution model, the operator threads run in parallel, optimally
overlapping CPU-, GPU-, and memory-bound processing.
• Third, Eureka exploits two sources of intra-operator paral-
lelism: (1) multi-threaded implementation of computer vi-
sions algorithms (e.g., from OpenCV and OpenBLAS); (2)
data-parallel versions of generic operators (e.g., ParallelMap,
ParallelFilter). These data-parallel operators typically
use a thread pool to concurrently process inputs, thus ex-
ploiting inter-interval parallelism.

4.3 Provenance and Late Materialization
Eureka queries often derive visual data by spatial-temporal crop-
ping. Such derivations may be recursive: i.e., crops inside a crop.
Eureka tracks provenance via reference to the upper-level element
from which a crop is created, much like “..” in a Linux directory.

Tracking provenance enables late materialization of decoded vi-
sual data. The crop made by an operator is logical. A new Interval
object is created with new (reduced) bounds, and its parent point-
ing to the source. The RGB array is not materialized immediately.
Instead, the reserved attribute name rgb is replaced by a callback
function that performs the actual cropping using its source’s RGB
data. Since the source itself may not have been materialized, call-
back and cropping are performed recursively, on demand.

4.4 Video Decoder and LRU Frame Cache
Parallel executing operators and late materialization pose chal-
lenges for decoding video frames. First, the cost of video decoding
is non-trivial. Second, for a large query graph, it requires a lot of
DRAM to hold “on-the-fly” decoded frames that await processing
by downstream operators. Third, video decoders are stateful and
have tape-like performance: decoding forward in time is efficient,
while winding-back or random seek is costly.

We address these issues by sharing a single video decoder be-
tween multiple operators, and introducing an LRU frame cache.
Figure 5 shows how these mechanisms work together during the
execution of a simple query. While the decode head is at frame 140,
the Track and Detection operators are trying to decode frame 130
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(a) get-out: person getting out of a vehicle
(b) get-in: person getting into a vehicle

(c) loading: person (un)loading objects from/into vehicle

(d) carry-bag: person carrying bag

(a) get-out (b) get-in

(c) loading (d) carry-bag

Figure 6. VIRAT Dataset Events and Examples

and 160, respectively. Without the frame cache, an expensive “wind-
back” is necessary and frame 130 needs to be decoded again. With
the frame cache, cached frame 130 can be returned to Detection
without moving the decode head; similarly for the subsequent frame
140. The frame cache not only reduces redundant decoding of the
same frame, but also reduces DRAM used by “on-the-fly” intervals
by passing cached frames by reference, rather than by value. A
callback function materializes the frame’s RGB data on demand.

5 Evaluation
5.1 Metrics
For rare events, labeling effort is dominated by the time taken to
collect a sufficient number of TPs for the training set, as negative
examples are usually easy to find. This leads to the concept of
productivity as a key metric:

Productivity [#/hr] =
# TPs discovered

Total length of video viewed
If ground truth is known, we can also calculate (event) recall:

Event recall [%] =
# TPs discovered

# Ground Truth Event instances
Note that precision,which is a simple ratio of counts, is a misleading
metric for video. An FP that is just one minute long is less painful
than an FP that is an hour long. This is in contrast to frames, for
which the pain of an FP is constant. The productivity metric takes
the length of FP video into account. An ideal method would achieve
100% recall with the highest possible productivity. Nonetheless, this
state of affairs could only exist at the end of the Eureka workflow,
after sufficient data has been labeled to train an accurate model.
Without a golden model, event-based Eureka provides a richer
tradeoff space between recall and productivity, and allows more
effective tradeoffs to be made relative to alternative approaches.

5.2 Datasets and Tasks
Our evaluation uses two datasets. The first is the VIRAT [18]
dataset (329 files totaling 8.6 hours) of video captured from real-life
public surveillance cameras at parking lots, school campus, streets,
etc. The second is the Okutama [1] dataset (33 files totaling 0.55

(a) pushing: person pushing or pulling object

(b) handshake: persons shaking hands

(a) pushing (b) handshake

Figure 7. Okutama Dataset Events and Examples

hours) of drone-captured video of actors performing scripted scenes
in a playground. Both datasets have multiple actions happening
simultaneously in a scene. We define four events of interest for
VIRAT (Figure 6) and two for Okutama (Figure 7).

5.3 Frame-based and Event-based Heuristics
Semantic fast-forwarding requires the user to guide the fast-forward-
ing using heuristics. These heuristics can be frame-based (i.e., only
involving spatial relationships on a single frame) or event-based
(i.e., involving temporal invariance across multiple frames of a
single-frame concept). Table 2 and 3 present these heuristics for
the events from the VIRAT and Okutama datasets. As discussed in
Section 2, we expect event-based heuristics to be more effective,
but that needs to be experimentally validated.

Event Frame-based Event-based
get-out Person + vehicle Person emerges from a

stopped vehicle
get-in Person + vehicle Person disappears into a

stopped vehicle
loading Person + vehicle Person stays next to vehi-

cle for > 2s
carry-bag Person Person attached to bag for

> 2s

Table 2. VIRAT Semantic Fast-Forwarding Heuristics

Event Frame-based Event-based
pushing Person + non-

person object
Person + non-person object
move together for > 2 seconds

handshake ≥ 2 persons Two persons’ trajectories
meet for > 2 seconds

Table 3. Okutama Semantic Fast-Forwarding Heuristics

5.4 Preliminary Case Study Results
We conducted a preliminary case study on the effectiveness of se-
mantic fast-forwarding. Its goal is to provide initial insights for
designing a formal user study. Since the subjects of the case study
were the authors themselves, no IRB approval was needed. We used
the Eureka operators in Table 1, which include a common (but not
exhaustive) set of computer vision building blocks. Emerging com-
puter vision techniques (e.g., pose estimation) can be incorporated
into Eureka, but are orthogonal to our focus in this paper.
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We use three labeling methods:
• Brute Force: a user views all video data, and labels all event
instances in it. This is painfully slow and laborious. However,
assuming that the user does not tire or make mistakes, it
defines ground truth.
• FB-Eureka: the video fast-forwards until a frame embodying
the specified heuristic is encountered. The user begins view-
ing at that frame, and continues until the event is complete
(in case of a positive), or until it is clear to the user that this
is a negative.
• EB-Eureka: the video fast-forwards until a segment embody-
ing the event-based heuristic is encontered. That segment is
then shown to the user.

Table 4 presents the VIRAT results. In this dataset, there are often
long periods when no event-relevant object is present in a frame
— e.g., a parking lot is empty of people and vehicles. As a result,
FB-Eureka is able to improve productivity significantly: up to 1.8X
that of BruteForce. EB-Eureka is able to eliminate many more FPs,
resulting in up to 5.0X the productivity of BruteForce. The imper-
fect recall of DNN-based object detection affects the recall of both
FB-Eureka and EB-Eureka. For get-out and get-in, the event-based
predicates are based on the start/end point of a person’s trajectory.
These require object tracking, which is not perfect. This leads to
an additional 17–19% loss of recall in EB-Eureka, relative to FB-
Eureka. This small sacrifice in recall is likely tolerable for creating
a training set, because it comes with a large gain in productivity.
Our qualitative impression on examining the missed TPs is that
they do not substantially enlarge the diversity of the training set.
Quantitatively establishing this would require training and com-
paring the AUC (Area Under the Curve) scores of a range of DNN
models. This remains future work.

For loading, the object being loaded/unloaded is often occluded
by the person or the vehicle. Therefore, we exclude it from our
predicate, leading to many FPs and hence low productivity for FB-
Eureka. For carry-bag, only a 5.8-hour subset of the VIRAT videos
are annotated with ground truth, so our evaluation only used that
subset. The bag being carried is often so small that it cannot be
detected on the frame level. Therefore, with FB-Eureka we only
predicate on the presence of persons. This explains FB-Eureka’s
high event recall but low productivity. By contrast, EB-Eureka
allows detecting the bags in a zoomed-in region, which has a higher
chance of success.

The Okutama dataset is more challenging than VIRAT for two
reasons. First, because the content of the videos is performed by
actors according to a script, there are no long stretches of “boring”
footage as in typical real-life video. Second, the aerial viewpoint and
abrupt turns of drone-captured video make detection and tracking
challenging. The results in Table 5 reflect these observations. For
FB-Eureka, poor recall offsets the benefit gained from pruning non-
event frames; this hurts productivity slightly for both pushing and
handshake. EB-Eureka is still able to achieve 1.6x productivity for
pushing, and essentially breaks even for handshake.

These results suggest that semantic fast-forwarding is especially
valuable for real-life video rather than curated video, such as that
found in movies or uploaded to YouTube. The latter have already
been curated to strip out long “boring” stretches, thus resulting

Labeling TPs Event Product-
effort found recall ivity
[hr] [#] [#/GT] [#/hr]

get-out
BruteForce 8.60 97 100% 11
FB-Eureka 3.86 76 78% 20
EB-Eureka 1.05 59 61% 56

get-in
BruteForce 8.60 111 100% 13
FB-Eureka 3.86 77 69% 20
EB-Eureka 1.06 55 50% 52

loading
BruteForce 8.60 80 100% 9
FB-Eureka 3.86 37 46% 10
EB-Eureka 0.76 33 41% 43

carry-bag
BruteForce 5.80 822 100% 141
FB-Eureka 4.08 809 98% 198
EB-Eureka 0.97 556 68% 573

Table 4. Labeling Effort for VIRAT Dataset Events

Labeling TPs Event Product-
effort found recall ivity
[hr] [#] [#/GT] [#/hr]

pushing
BruteForce 0.55 134 100% 242
FB-Eureka 0.43 100 75% 234
EB-Eureka 0.20 77 57% 395

handshake
BruteForce 0.55 71 100% 128
FB-Eureka 0.39 48 68% 124
EB-Eureka 0.37 48 68% 130

Table 5. Labeling Effort for Okutama Dataset Events

in video with less opportunity for simple heuristics. Also, as men-
tioned earlier, a more rigorous user study to validate our results
will be worth the effort.

6 Context and Related Work
Research in video analytics systems can be viewed within a 4-
level taxonomy, in which higher levels involve extraction of deeper
knowledge. Each level poses unique challenges in terms of system
design and algorithms.
Level 0 (L0): treats video as a collection of independent static
images. No temporal relationships are considered. Standard im-
age analytics tasks, such as classification and object detection, can
be applied to video data with little change. Diamond [7] and Gi-
gaSight [20, 21] are examples of L0 systems.
Level 1 (L1): exploits certain attributes of video data, such as tempo-
ral similarity, in order to reduce frame processing cost and improve
application-level utility. The majority of recent work falls in this
category. Table 6 lists some of the most important recent L1 sys-
tems. It can be seen that search targets in this table are all nouns
and not temporal in nature. These systems also assume a golden
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System Search targets considered
NoScope [13] Person, bus, car
BlazeIt [12] Bus, car, boat
Chameleon [11] Targets from the COCO data set [15]
Focus [6] Targets from the COCO data set
Mainstream [10] Pedestrian, bus, car, train
FilterForward [2] Pedestrian, pedestrian wearing red
Drone split Person, car, raft, elephant
compute [26]
Gabriel [27] Lego blocks, ping-pong table, human face
EVA [29] Vehicle

Table 6. Recent L1 Video Analytics Systems

model exists as a starting point for finetuning and optimization,
whereas such a model does not exist in Eureka’s use cases.
Level 2 (L2): systems treat video as a spatial-temporal container of
events. Because of the need to maintain temporal information, L2
analytics poses additional challenges in terms of algorithmic design
and system optimization. Eureka is an L2 system. Snorkel [19] offers
part of EB-Eureka’s functions that only deal with metadata, without
streaming or content-based processing. Activity recognition [5, 9,
24, 30] based on DNNs trained via supervised learning can be seen
as a form of L2 analytics. Object tracking [28] also maps to L2.
Level 3 (L3): involves fusion of multi-sensor multi-modality data.
This includes video data from multiple cameras, as well as other
sensor types such as audio sensors and thermometers. Some re-
searchers have started to consider this problem [8], but overall it is
still a nascent area.

In the above 4-level taxonomy, tasks of a lower level can be
formulated as a degenerated case of a higher level. For example, L1
frame-based analysis can be seen as finding one-frame L2 events
(e.g., “object 𝑋 appears in frame 𝑡”); L2 event analysis in a video
stream can be seen as L3 𝑛-camera fusion where 𝑛 = 1.

While Eureka builds on recent work in deep learning, it also
leverages much older work. As mentioned in Section 1, Eureka
combines DNN-based object detection within individual frames
with ER reasoning about detected objects, both spatially within
individual frames and temporally across multiple frames. The idea
of specifying an object detector as a set of geometric relationships
between parts dates back nearly 50 years to Fischler and Elschlager’s
pictorial structures [4]. A more modern realization of this approach
is the 2009 work on deformable part models (DPM) [3]. Although
deep learning has muted the value of these old techniques, Eureka
shows that they are still valuable in its heuristics.

Finally, Eureka complements work in few-shot learning (FSL) [14,
16, 17]. The goal of FSL is to “make do” with a tiny training set.
Eureka, on the other hand, is all about enlarging the training set.
One can view a weak FSL model for spatio-temporal events as an
excellent heuristic for Eureka. Once a large training set is assembled,
supervised learning in activity recognition can complete the job.

7 Conclusion and Future Work
Indexing the vast quantities of video that are captured daily is a
herculean effort. Well-known mechanisms such as map-reduce,
combined with large GPU-equipped computing clusters (possibly
edge-based) are necessary, but not sufficient. Also needed are DNNs
for activity recognition. Over time, we expect that an ever-growing

collection of activities of increasing complexity will be of interest.
We have focused on the construction of training sets for creating
these DNNs. We have introduced the concept of semantic fast-
forwarding, and described a system that is able to significantly
improve human productivity in labeling. Our preliminary results
suggest that this is a promising path forward. Techniques in this
paper may be repurposed for pre-filtering in mobile-edge comput-
ing systems such as [25, 26]. We leave it as future work to explore
their applications in those contexts.

Our preliminary evaluation in this paper has focused on the
productivity improvement enabled by semantic fast-forwarding.
This evaluation can be extended in many ways. There is further
opportunity for improving performance using techniques from
systems such as GigaSight [20] and EVA [29]. There is also an
opportunity to study the kinds of heuristics that are used by Eureka
users on real tasks. This would likely entail a formal user study,
which is important future work in this domain.
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