
Bandwidth-efficient Live Video Analytics for Drones via Edge Computing

Junjue Wang∗, Ziqiang Feng∗, Zhuo Chen∗, Shilpa George∗, Mihir Bala†, Padmanabhan Pillai‡,
Shao-Wen Yang‡, and Mahadev Satyanarayanan∗

∗ Computer Science Department, Carnegie Mellon University, {junjuew, zf, zhuoc, shilpag, satya}@cs.cmu.edu
† University of Michigan, mihirkb@umich.edu

‡ Intel Labs, {padmanabhan.s.pillai, shao-wen.yang}@intel.com

Abstract—Real-time video analytics on small autonomous
drones poses several difficult challenges at the intersection of
wireless bandwidth, processing capacity, energy consumption,
result accuracy, and timeliness of results. In response to these
challenges, we describe four strategies to build an adaptive
computer vision pipeline for search tasks in domains such
as search-and-rescue, surveillance, and wildlife conservation.
Our experimental results show that a judicious combination
of drone-based processing and edge-based processing can save
substantial wireless bandwidth and thus improve scalability,
without compromising result accuracy or result latency.

I. INTRODUCTION

Continuous video transmission from a swarm of drones

places severe stress on the wireless spectrum. Hulu estimates

that its video streams require 13 Mbps for 4K resolution and

6 Mbps for HD resolution using highly optimized offline

encoding [1]. Live streaming is less bandwidth-efficient, as

confirmed by our measured bandwidth of 10 Mbps for HD

feed at 25 FPS from a drone. Just 50 drones transmitting

HD video streams continuously can saturate the theoretical

uplink capacity of 500 Mbps in a 4G LTE cell that covers

a large rural area [2]. This is clearly not scalable.

In this paper, we show how edge computing can greatly

reduce the per-drone bandwidth demand for video analytics,

without compromising the timeliness or accuracy of results.

We focus on a class of drones that are autonomous, rather

than tele-operated. Once mission-specific flight control soft-

ware is loaded, autonomous drones can fly completely

disconnected. If any wireless bandwidth is consumed, it is

solely for real-time analytics. In this paper, “drone” will

always mean “autonomous drone.”

We present techniques for an adaptive computer vision

pipeline for small drones that leverages edge computing to

enable dynamic, mission-specific optimizations. Adaptation

is crucial to meeting the requirements of diverse missions.

For example, rapid discovery of survivors is the dominant

concern in a search-and-rescue mission, while stealth may

be the crucial requirement of a military mission. Drones

have the potential to transform such diverse domains as

forestry [3], warfare [4], traffic management [5], and disaster

recovery [6]. A swarm of drones, working cooperatively and

loosely supervised by a single human operator, as illustrated

in Figure 1, has been proposed in the literature as a powerful

Mission
Personnel

4G LTE

4G LTE

4G LTE

Cell
Tower

CloudletFiber
Link

Fiber
Link

Fiber
Link

4G LTE

Figure 1. Typical Mission Elements

future paradigm for search tasks [7]. This paper is a step

towards realizing that vision.

The main contribution of this paper is to introduce and

examine bandwidth saving strategies when offloading com-

putation to an edge node for real-time drone video analysis.

In contrast to previous works [8] [9] [10], we leverage

state-of-the-art deep neural networks (DNNs) to selectively

transmit interesting data from a drone video stream and

explore mission-specific optimizations.

Our contributions are as follows:

• A bandwidth-efficient architecture based on edge com-

puting that enables live video analytics for small drones.

• Four different strategies to reduce total transmission:

EarlyDiscard, Just-in-Time-Learning, Reachback and

Context-Aware.

• Experimental evidence that demonstrates the effective-

ness of these strategies in saving bandwidth while

minimally impacting result accuracy and latency.

II. VIDEO PROCESSING ON SMALL DRONES

In the context of real-time video analytics, small drones

represent a “perfect storm” of fundamental mobile comput-

ing challenges that were identified two decades ago [11].

Two challenges have specific relevance here. First, mobile

elements are resource-poor relative to static elements. Sec-

ond, mobile connectivity is highly variable in performance

and reliability. We discuss their implications below.

159

2018 Third ACM/IEEE Symposium on Edge Computing

978-1-5386-9445-9/18/$31.00 ©2018 IEEE
DOI 10.1109/SEC.2018.00019

A. Payload and Drone Size

A high-resolution video camera can be small and light,

and be easily carried even by a very small drone. Flash

storage to preserve captured video at full fidelity can also

fit easily into such a drone. For example, a 16 GB flash

chip can store over five hours of HD video, using Netflix’s

estimate of 3 GB per hour [12]. From our measurement,

a drone-encoded HD video occupies 4.7 GB storage space

per hour, yielding over three hours of storage on that

flash chip. Finally, in spite of the small size and the light

weight of a smartphone, its sensing and processing capability

are adequate for GPS-based autonomous navigation and

flight control [13]. The drone version of this hardware can

be even smaller and lighter since interaction components

such as the touch-screen display can be omitted. For these

reasons, “small” in the context of this paper means “just

powerful enough to carry a smartphone as payload.” To

anticipate future improvements in smartphone technology,

our experiments also consider more powerful devices such

as the Intel R© Joule [14] and the NVIDIA Jetson [15] that

are physically compact and light enough to be credible as

small drone payloads in a few years.

Unfortunately, the hardware needed for deep video stream

processing in real time is larger and heavier than can fit on a

small drone. State-of-art techniques in image processing use

DNNs that are compute- and memory-intensive. Figure 3

presents experimental results on two fundamental computer

vision tasks, image classification and object detection, on

five different devices. In the figure, MobileNet V1 and

ResNet101 V1 are image classification DNNs. Others are

object detection DNNs. Both tasks used publicly available

pretrained DNN models. We carefully choose hardware

platforms to represent a range of computation capabilities

a small drone can carry including the Intel R© Aero Drone

platform [16] shown in Fig. 2 and NVIDIA Jetson TX2 [17].

In Fig. 3, we present the best results we could obtain on each

platform. This is not intended to directly compare frame-

works and platforms (as others have been doing [18]), but

rather to illustrate the differences between drone-mountable

platforms and fixed infrastructure servers.

Image classification maps an image into categories, with

each category indicating whether one or many particular

objects (e.g., a human survivor, a specific animal, or a car)

exist in the image. The prediction speed using two different

DNNs are shown. MobileNet V1 [19] is a DNN designed for

mobile devices from the ground-up by reducing the number

of parameters and simplifying the computation using depth-

wise separable convolution. ResNet101 V1 [20] is a more

accurate but also more resource-hungry DNN that won the

ImageNet classification challenge in 2015 [21].

Object detection is a harder task than image classification,

because it requires bounding boxes to be predicted around

the specific areas of an image that contains a particular class

Figure 2. Intel R© Aero Drone exemplifies our target class of small drones

of object. Object detection DNNs are built on top of image

classification DNNs by using image classification DNNs

as low-level feature extractors. Since feature extractors in

object detection DNNs can be changed, the DNN structures

excluding feature detectors are referred as object detection

meta-architectures. We benchmarked two object detection

DNN meta-architectures: Single Shot Multibox Detector

(SSD) [22] and Faster R-CNN [23]. We used multiple feature

extractors for each meta-architecture. The meta-architecture

SSD uses simpler methods to identify potential regions

for objects and therefore requires less computation and

runs faster. On the other hand, Faster R-CNN [23] uses a

separate region proposal neural network to predict regions of

interest and has been shown to achieve higher accuracy [24].

Figure 3 presents results in four columns: SSD combined

with MobileNet V1 or Inception V2, and Faster R-CNN

combined with Inception V2 or ResNet101 V1 [20]. The

combination of Faster R-CNN and ResNet101 V1 is one of

the most accurate object detectors available today [21]. The

entries marked “ENOMEM” correspond to experiments that

were aborted because of insufficient memory.

These results demonstrates the computation gap between

mobile and static elements. While the most accurate object

detection model Faster R-CNN Resnet101 V1 can achieve

more than two FPS on a server GPU, it either takes several

seconds on mobile platforms or fails to execute due to

insufficient memory. In addition, the figure also confirms

that sustaining open-ended real-time video analytics on

smartphone form factor computing devices is well beyond

the state of the art today and may remain so in the near

future. This constrains what is achievable with small drones.

These constraints do not apply to much larger drones that

can carry more substantial computing hardware and energy

sources. However, there are compelling reasons to use the

smallest drone that meets mission requirements such as flight

duration. First, in the context of drone flight regulation (a

topic of intense discussion in many countries), small drones

are likely to receive favorable consideration since they have

less potential to cause severe damage in case of accidents.

160

M: MobileNet V1; R: ResNet101 V1; S-M: SSD MobileNet V1; S-I: SSD Inception V2;

F-I: Faster R-CNN Inception V2; F-R: Faster R-CNN ResNet101 V1

Image

Classification

Object Detection

Weight

(g)

CPU GPU M

(ms)

R

(ms)

S-M

(ms)

S-I

(ms)

F-I

(ms)

F-R

(ms)
Nexus 6 184 4-core 2.7 GHZ

Krait 450, 3GB

Mem

Adreno 420 353 (67) 983 (141) 441 (60) 794 (44) ENOMEM ENOMEM

Intel R©

Joule

570x

25 4-core 1.7 GHz Intel

Atom R© T5700, 4GB

Mem

Intel R© HD

Graphics

(gen 9)

37 (1)‡ 183 (2)†‡ 73 (2)‡ 442 (29) 5125 (750) 9810 (1100)

Intel R©

Aero

Drone

4-core 1.6 GHz Intel

Atom R© x7-Z8750,

4GB Mem

Intel R© HD

Graphics

(gen 8)

42 (1)‡ 223 (1)†‡ 89 (1)‡ 860 (27) 7461 (230) 13 340 (59)

NVIDIA

Jetson

TX2

85 2-Core 2.0 GHz

Denver2 + 4-Core

2.0 GHz Cortex-

A57, 8GB Mem

256 cuda

core 1.3

GHz

NVIDIA

Pascal

13 (0)† 92 (2)† 192 (18) 285 (7)† ENOMEM ENOMEM

Rack-

mounted

Server

2x 36-core 2.3 GHz

Intel R© Xeon R© E5-

2699v3 Processors,

128GB Mem

2880 cuda

core

875MHz

NVIDIA

Tesla K40,

12GB GPU

Mem

4 (0)‡ 33 (0)† 12 (2)‡ 70 (6) 229 (4)† 438 (5)†

Figures above are means of 3 runs across 100 random images. The time shown includes only the forward pass time using batch size
of 1. ENOMEM indicates failure due to insufficient memory. Figures in parentheses are standard deviations. The weight figures for
Joule and Jetson include only the modules without breakout boards. Weight for Nexus 6 includes the complete phone with battery
and screen. Numbers are obtained with TensorFlow (TensorFlow Lite for Nexus 6) unless indicated otherwise.
† indicates GPU is used. ‡ indicates Intel R© Computer Vision SDK beta 3 is used.

Figure 3. Deep Neural Network Inference Speed

Second, larger drones are less maneuverable and more prone

to interference with other drone traffic in congested spaces.

Third, they are also more expensive to purchase, operate and

maintain. Reduced size and weight have many benefits.

B. Result Latency, Offloading & Scalability
Result latency is the delay between first capture of a video

frame in which a particular result (e.g., image of a survivor)

is present, and report of its discovery to mission personnel

after video processing. Operating totally disconnected, a

small drone can capture and store video, but defer its

processing until the drone completes its mission and returns.

At that point, the data can be uploaded from the drone to

the cloud and processed there. This approach completely

eliminates the need for real-time video processing, obviating

the challenges of payload limits and drone size discussed

in the previous section. Unfortunately, this approach delays

the discovery and use of knowledge in the captured data by

a substantial amount (e.g., many tens of minutes to a few

hours). Such delay may be unacceptable in use cases such

as search-and-rescue or military surveillance. In this paper,

we focus on approaches that aim for much smaller result

latency: ideally, close to real-time.

A different approach is to offload video processing during

flight over a wireless link to an edge computing node called a

cloudlet. With this approach, even a small drone can leverage

the substantial processing capability of a ground-located

cloudlet, without concern for its weight, size, heat dissi-

pation, or energy usage. Much lower result latency is now

possible. However, even if cloudlet resources are viewed as

“free” from the viewpoint of mobile computing, the drone

consumes wireless bandwidth in transmitting video.

Today, 4G LTE offers the most plausible wide-area con-

nectivity from a drone in flight to its associated cloudlet.

The much higher bandwidths of 5G are still many years

away, especially at global scale. More specialized wireless

161

technologies for drones, such as Lightbridge 2 [25], can

also be used. Regardless of specific wireless technology, the

principles and techniques described in this paper apply.

Scalability, in terms of maximum number of concurrently

operating drones within a 4G LTE cell becomes an important

metric. In this paper we explore how the limited processing

capability on a drone can be used to greatly decrease the

volume of data transmitted, thus improving scalability while

minimally impacting result accuracy and result latency.

Note that the uplink capacity of 500 Mbps per 4G

LTE cell assumes standard cellular infrastructure that is

undamaged. In natural disasters and military combat, this

infrastructure may be destroyed. Emergency substitute in-

frastructure, such as Google and AT&T’s partnership on

balloon-based 4G LTE infrastructure for Puerto Rico after

hurricane Maria [26], can only sustain much lower uplink

bandwidth per cell, e.g. 10Mbps for the balloon-based

LTE [27]. Conserving wireless bandwidth from drone video

transmission then becomes even more important, and the

techniques described here will be even more valuable.

Result accuracy influences a second dimension of scala-

bility, namely the ability of one individual to supervise the

result streams from many drones. The output of each video

processing pipeline should only demand occasional human

attention. The accuracy, sophistication, and speed of this

pipeline determines the cognitive load on mission personnel

for a given video stream. For example, a pipeline that has

virtually no false positives or false negatives in detecting

survivors will consume less supervisory human attention

than a mediocre pipeline. That will allow one person to

confidently supervise a large swarm that rapidly covers a

large search area.

III. SYSTEM ARCHITECTURE

A. Overview
Figure 1 shows the key components of a typical mission.

A swarm of drones flies over a certain coverage area. Each

drone has sufficient storage on board to store all the video

captured during the mission at full fidelity. During flight,

the drone can transmit all or part of the video captured

to a ground-based cloudlet over a wireless network. Pre-

liminary filtering of incoming video on board the drone

determines which subsets of the video stream, along with

possible annotations from the filtering, are transmitted. The

sophistication of this filtering depends on the computational

power available on the drone, since it has to be performed at

a rate that is at least loosely correlated with the video capture

frame rate. Mission personnel can view the data in near real-

time after processing by the cloudlet, and can take actions

based on what they learn. For example, a search and rescue

mission Graphical User Interface (GUI) may highlight the

map coordinates of a survivor seen in the video feed. A

rescue team can then be dispatched to those coordinates.

As Figure 1 suggests, the coverage area of a drone swarm

may span multiple 4G LTE cells. Multiple swarms may con-

currently operate within a cell, and across cells. Depending

on the use case, many different types of cloudlets may be

used. These can range from small standalone units to one

or more racks of equipment within a small edge-located

building. In Fig. 1, the cloudlet is connected to the LTE

base station and packets from drones are routed directly to

the cloudlet without traversing the Internet backbone. While

existing LTE infrastructure is more convoluted because of

its legacy Evolved Packet Core, efforts are being made by

industry to simplify connectivity in order to harness the

benefits of edge computing [28] [29] [30]. For illustration,

Figure 1 shows an Ubuntu Orange Box [31] as the cloudlet.

This self-contained cluster of Xeon processors with storage

and networking is a “data center in a box” that can be easily

transported to a mission site.

In this paper, we focus on the computer vision pro-

cessing pipeline of a single drone. While the problems of

swarm management and coordination are interesting, they

are outside the scope of this paper. Only two aspects of

swarms are significant here. First, swarms increase the total

communication volume; it is thus important that each drone

be frugal in its bandwidth usage. Second, swarms increase

the total cognitive load on mission personnel. The result

accuracy of each video processing pipeline needs to be high.

Our focus on mission-specific video processing allows

us to ignore the sensing and processing required for flight

control and navigation. We assume that these more basic

capabilities are provided by a separate drone subsystem.

As explained in Section I, the total wireless bandwidth

demand from this subsystem is negligible since we are

focusing exclusively on autonomous drones. Virtually all of

the bandwidth demand from such a drone comes from its

transmission of mission-specific video to its cloudlet.

B. Reducing Bandwidth Demand
Our goal is to reduce the total volume of data transmitted

from a drone to cloudlet during a mission, while preserving

excellent result latency and high result accuracy. For any

given event, such as the first appearance of a specific

survivor in a video frame, the lowest attainable result latency

is the sum of four components: (a) capture and processing

delay in the drone; (b) transmission delay over the wireless

link; (c) processing delay in the cloudlet; (d) reaction time

of mission personnel. We assume that (d) is invariant across

all the strategies that we study, and therefore omit it from

further discussion. Assuming that the cloudlet is powerful

enough to meet the peak processing demand of all video

streams from a swarm, component (c) can also be viewed as

invariant across strategies. Thus, (a) and (b) are the primary

variables of interest in our study. In particular, we focus

on reducing the total amount of data transmitted and study

its impact on (a) and (b). While various conditions in real

162

networks also influence the total bandwidth consumed, we

take a network transparent view in this paper.

As the baseline for comparison, we use the approach of

performing no processing on the drone: all video is trans-

mitted immediately. We call this the DUMBDRONE strategy.

Among all strategies, it will generate the highest volume

of data during a mission. Section IV presents this baseline

bandwidth demand on a suite of benchmark videos that are

used for evaluation in the rest of the paper. Today’s tele-

operated drones essentially use the DUMBDRONE strategy.

In Sections V to VIII, we describe and evaluate four

strategies to reduce bandwidth demand. We list them below

with very brief descriptions, and discuss them fully in

their respective sections. These strategies are not mutually

exclusive, and may be combined into mission-specific

optimized pipelines.

• EARLYDISCARD: Use limited processing on the drone

to avoid transmitting “uninteresting” video frames.

• JUST-IN-TIME-LEARNING (JITL): Use real-time machine

learning on the early part of an input video stream to

adapt and improve drone processing on the later part

of the video stream.

• REACHBACK: Compensate for over-zealous filtering on

the drone by having the cloudlet reach back and re-

quest suppressed video segments from drone storage to

discover false negatives.

• CONTEXTAWARE: Exploit unique opportunities for op-

timization that are only possible because of specific

attributes of the current mission and video stream.

C. Key Performance Indicators

In evaluating these alternative strategies, our key metric

of interest is the total volume of data (number of bytes)

transmitted over the duration of a mission. Peak bandwidth

demand, averaged over a short interval such as one second,

is also of interest. Low values of both metrics are desirable

since they indicate better scalability.

Result latency is also of interest. For all detected events,

small result latency is ideal since it enables the fastest

possible response. In computing the statistics of this variable

(e.g., mean or standard deviation), we omit undetected events

since they effectively have infinite result latency.

Precision and recall, which are the classic measures of

computer vision accuracy, are also important. False negatives

in the pipeline (i.e., poor recall) correspond to missed events.

This can have dire consequences in the real world, such as

a survivor dying because no attempt was made to rescue

him. At the same time, too many false positives (i.e.,

poor precision) can result in cognitive overload for mission

personnel. That, in turn, can lead to human errors in the

mission that may also have dire consequences. In practice,

a workable approach is to bias the pipeline slightly towards

lower precision and higher recall. This increases cognitive

load modestly, while striving to minimize missed events.

IV. DUMBDRONE STRATEGY

A. Description

As its name implies, no image processing is done on

the drone in this baseline strategy. Instead, captured video

is immediately written to drone storage and concurrently

transmitted to the cloudlet. Result latency is very low, merely

the sum of transmission delay and cloudlet processing delay.

B. Experimental Setup

To ensure experimental reproducibility, our evaluation is

based on replay of a benchmark suite of pre-captured videos

rather than on measurements from live drone flights. In

practice, live results may diverge slightly from trace replay

because of non-reproducible phenomena. These can arise,

for example, from wireless propagation effects caused by

varying weather conditions, or by seasonal changes in the

environment such as the presence or absence of leaves on

trees. In addition, variability can arise in a drone’s pre-

programmed flight path due to collision avoidance with

moving obstacles such as birds, other drones, or aircraft.

All of the pre-captured videos in the benchmark suite

are publicly accessible, and have been captured from aerial

viewpoints. They characterize drone-relevant scenarios such

as surveillance, search-and-rescue, and wildlife conservation

that were mentioned in Section I. Figure 4 presents this

benchmark suite of videos, organized into five tasks. All

the tasks involve detection of tiny objects on individual

frames. Task T5 additionally involves action detection,

which operates on short video segments rather than indi-

vidual frames. Although T2 is also nominally about action

detection (moving cars), it is implemented using object

detection on individual frames and then comparing the pixel

coordinates of vehicles in successive frames.

C. Results

Figure 5 presents the key performance indicators on the

object detection tasks T1 and T2. We use the well-labeled

dataset to train and evaluate Faster-RCNN with ResNet 101.

We report the precision and recall at maximum F1 score.

Peak bandwidth is not shown since it is identical to average

bandwidth demand for continuous video transmission. As

shown earlier in Figure 3, the accuracy of this algorithm

comes at the price of very high resource demand. This

can only be met today by server-class hardware that is

available in a cloudlet. Even on a cloudlet, the figure of

438 milliseconds of processing time per frame indicates

that only a rate of two frames per second is achievable.

Sustaining a higher frame rate will require striping the

frames across cloudlet resources, thereby increasing resource

demand considerably. Note that the results in Figure 3 were

based on 1080p frames, while tasks T1 and T5 use the

163

Detection Data Data Training Testing

Task Goal Source Attributes Subset Subset

T1 People in

scenes of

daily life

Okutama

Action

Dataset [32]

33 videos

59842 fr

4K@30 fps

9 videos

17763 fr

6 videos

20751 fr

T2 Moving

cars

Stanford

Drone

Dataset [33]

60 videos

522497 fr

1080p@30 fps

16 videos

179992 fr

14 videos
92378 fr

Combination
of test
videos

from each
dataset.

T3 Raft in

flooding

scene

YouTube

collec-

tion [34]

11 videos

54395 fr

720p@25 fps

8 videos

43017 fr

T4 Elephants

in natural

habitat

YouTube

collec-

tion [35]

11 videos

54203 fr

720p@25 fps

8 videos

39466 fr

T5 Pushing

or pulling

Suitcases

Okutama
Action
Dataset

Same as T1 Same as
T1

fr = “frames”
fps = “frames per second”
No overlap between training and testing subsets of data

Figure 4. Benchmark Suite of Video Traces

Total Avg

Bytes BW

Task (MB) (Mbps) Recall Precision

T1 924 10.7 74% 92%

T2 2704 7.0 66% 90%

Peak bandwidth demand is same as average since
video is transmitted continuously. Precision and
recall are at the maximum F1 score.

Figure 5. Baseline Object Detection KPIs

Drone
Storage

Example Early Discard Filters

MobileNet DNN

Color Histogram
AlexNet DNN

DNN+SVM Cascade

Camera Encode &
Stream

to
cloudlet

Figure 6. Drone-based Early Discard

higher resolution of 4K. This will further increase demand

on cloudlet resources.

Clearly, the strategy of blindly shipping all video to the

cloudlet and processing every frame is resource-intensive to

the point of being impractical today. It may be acceptable as

an offline processing approach in the cloud, but is unrealistic

for real-time processing on cloudlets. We therefore explore

an approach in which a modest amount of computation on

the drone is able, with high confidence, to avoid transmitting

many video frames and thereby saving wireless bandwidth

as well as cloudlet processing resources. This leads us to

the EARLYDISCARD strategy of the next section.

V. EARLYDISCARD STRATEGY

A. Description

EarlyDiscard is based on the idea of using on-board

processing to filter and transmit only interesting frames

in order to save bandwidth when offloading computation.

Previous work [36] [37] leveraged pixel-level features and

multiple sensing modalities to select interesting frames from

hand-held or body-worn cameras. In this work, we explore

the use of DNNs to filter frames from aerial views. The

benefits of using DNNs are twofold. First, DNNs are trained

and specialized for each task, resulting in their high accuracy

and robustness. Second, no additional hardware is added to

existing drone platforms.

Although smartphone-class hardware is incapable of sup-

porting the most accurate object detection algorithms at

full frame rate today, it is typically powerful enough to

support less accurate algorithms. These weak detectors are

typically designed for mobile platforms or were the state of

the art just a few years ago. In addition, they can be biased

towards high recall with only modest loss of precision. In

other words, many clearly irrelevant frames can be discarded

by a weak detector, without unacceptably increasing the

number of relevant frames that are erroneously discarded.

This asymmetry is the basis of the early discard strategy.

As shown in Figure 6, we envision a choice of weak

detectors being available as early discard filters on a drone,

with the specific choice of filter being mission-specific.

Relative to the measurements presented in Figure 3, early

discard only requires image classification: it is not necessary

to know exactly where in the frame a relevant object occurs.

This suggests that MobileNet would be a good choice as a

weak detector. Its speed of 13 ms per frame on Jetson yields

more than 75 fps. We therefore use MobileNet on the drone

for early discard in our experiments.

Pre-trained classifiers for MobileNet are available today

for objects such as cars, animals, human faces, human bod-

ies, watercraft, and so on. However, these DNN classifiers

have typically been trained on images that were captured

from a human perspective — often by a camera held or

worn by a person. A drone, however, has an aerial viewpoint

and objects look rather different. To improve classification

accuracy on drones, we used transfer learning [38] to

finetune the pre-trained classifiers on small training sets of

images that were captured from an aerial viewpoint. This

involves initial re-training of the last DNN layer, followed by

re-training of the entire network until convergence. Transfer

learning enables accuracy to be improved significantly for

aerial images without incurring the full cost of creating a

large training set captured from an aerial viewpoint.

164

Figure 7. Tiling and DNN Fine Tuning

Drone images are typically captured from a significant

height, and hence objects in such an image are small. This

interacts negatively with the design of many DNNs, which

first transform an input image to a fixed low resolution — for

example, 224x224 pixels in MobileNet. Many important but

small objects in the original image become less recognizable.

It has been shown that small object size correlates with poor

accuracy in DNNs [24]. To address this problem, we tile high

resolution frames into multiple sub-frames and then perform

recognition on the sub-frames. This is done offline for

training, as shown in Figure 7, and also for online inference

on the drone and on the cloudlet. The lowering of resolution

of a sub-frame by a DNN is less harmful, since the scaling

factor is smaller. Objects are represented by many more

pixels in a transformed sub-frame than if the entire frame

had been transformed. The price paid for tiling is increased

computational demand. For example, tiling a frame into four

sub-frames results in four times the classification workload.

B. Experimental Setup

Our experiments on the EARLYDISCARD strategy used the

same benchmark suite described in Section IV-B. We used

Jetson TX2 as the drone platform. We use both frame-based

and event-based metrics to evaluate the MobileNet filters.

C. Results of Early Discard Filters

EarlyDiscard is able to significantly reduce the bandwidth

consumed while maintaining high result accuracy and low

average delay. For three out of four tasks, the average

bandwidth is reduced by a factor of ten. Below we present

our results in detail.

Effects of Tiling: Tiling is used to improve the accuracy for

high resolution aerial images. We used the Okutama Action

Dataset, whose attributes are shown in row T1 of Figure 4, to

explore the effects of tiling. For this dataset, Figure 8 shows

how speed and accuracy change with tile size. Accuracy

Figure 8. Speed-Accuracy Trade-off of Tiling

improves as tiles become smaller, but the sustainable frame

rate drops. We group all tiles from the same frame in a

single batch to leverage parallelism, so the processing does

not change linearly with the number of tiles. The choice of

an operating point will need to strike a balance between the

speed and accuracy. In the rest of the paper, we use two tiles

per frame by default.

Drone Filter Accuracy: The output of a drone filter is

the probability of the current tile being “interesting.” A

tunable cutoff threshold parameter specifies the threshold

for transmission to the cloudlet. All tiles, whether deemed

interesting or not, are still stored in the drone storage for

post-mission processing.

Figure 9 shows our results on all four tasks. Events such

as detection of a raft in T3 occur in consecutive frames, all

of which contain the object of interest. A correct detection

of an event is defined as at least one of the consecutive

frames being transmitted to the cloudlet. Blue lines in

Figure 9 shows how the event recalls of drone filters for

different tasks change as a function of cutoff threshold. The

MobileNet DNN filter we used is able to detect all the events

for T1 and T4 even at a high cutoff threshold. For T2 and T3,

the majority of the events are detected. Achieving high recall

on T2 and T3 (on the order of 0.95 or better) requires setting

a low cutoff threshold. This leads to the possibility that

many of the transmitted frames are actually uninteresting

(i.e., false positives).

False negatives: As discussed earlier, false negatives are a

source of concern with early discard. Once the drone drops

a frame containing an important event, improved cloudlet

processing cannot help. The results in the third column of

Figure 10 confirm that there are no false negatives for T1

and T4 at a cutoff threshold of 0.5. For T2 and T3, lower

cutoff thresholds are needed to achieve perfect recalls.

Result latency: The contribution of early discard processing

to total result latency is calculated as the average time

difference between the first frame in which an object occurs

(i.e., first occurrence in ground truth) and the first frame

containing the object that is transmitted to the backend (i.e.,

first detection). The results in the fourth column of Figure 10

confirm that early discard contributes little to result latency.

The amounts range from 0.1 s for T1 to 12.7 s for T3. At the

165

(a) T1 (b) T2

(c) T3 (d) T4

Figure 9. Where the Bandwidth Goes

Task Dete- Avg Total Avg Peak

Total cted Delay Data B/W B/W

Events Events (s) (MB) (Mbps) (Mbps)

T1 62 100 % 0.1 441 5.10 10.7

T2 11 73 % 4.9 13 0.03 7.0

T3 31 90 % 12.7 93 0.24 7.0

T4 25 100 % 0.3 167 0.43 7.0

Figure 10. Recall, Event Latency and Bandwidth at Cutoff Threshold 0.5

timescale of human actions such as dispatching of a rescue

team, these are negligible delays.

Bandwidth: Columns 5–7 of Figure 10 pertain to wireless

bandwidth demand for the benchmark suite with early dis-

card. The figures shown are based on H.264 encoding of

each individual frames in the drone-cloudlet video trans-

mission. Average bandwidth is calculated as the total data

transmitted divided by mission duration. Comparing column

5 of Figure 10 with column 2 of Figure 5, we see that all

videos in the benchmark suite are benefited by early discard

(Note T3 and T4 have the same test dataset as T2). For T2,

T3, and T4, the bandwidth is reduced by more than 10x. The

amount of benefit is greatest for rare events (T2 and T3).

When events are rare, the drone can drop many frames.

Figure 9 provides deeper insight into the effectiveness of

cutoff-threshold on event recall. It also shows how many true

positives (violet) and false positives (aqua) are transmitted.

Ideally, the aqua section should be zero. However for T2,

most frames transmitted are false positives, indicating the

early discard filter has low precision. The other tasks exhibit

far fewer false positives. This suggests that the opportunity

exists for significant bandwidth savings if precision could

be further improved, without hurting recall.

Figure 11. Event Recall at Different Sampling Intervals

10−4

10−3

10−2

(a) T1

10−4

10−2

(b) T2

10−5

10−4

10−3

(c) T3

10−4

10−2

(d) T4

Figure 12. Sample with Early Discard. Note the log scale on y-axis.

D. Use of Sampling

Given the relatively low precision of the weak detectors,

a significant number of false positives are transmitted. Fur-

thermore, the occurrence of an object will likely last through

many frames, so true positives are also often redundant for

simple detection tasks. Both of these result in excessive con-

sumption of precious bandwidth. This suggests that simply

restricting the number of transmitted frames by sampling

may help reduce bandwidth consumption.

Figure 11 shows the effects of sending a sample of frames

from the drone, without any content-based filtering. Based

on these results, we can reduce the frames sent as little as

one per second and still get adequate recall at the cloudlet.

Note that this result is very sensitive to the actual duration

of the events in the videos. For the detection tasks outlined

here, most of the events (e.g., presences of a particular

elephant) last for many seconds (100’s of frames), so such

sparse sampling does not hurt recall. However, if the events

166

JPEG

Frame

Sequence

(MB)

H264

High

Quality

(MB)

H264

Medium

Quality

(MB)

H264

Low

Quality

(MB)

5823 3549 1833 147

H264 high quality uses Constant Rate Factor (CRF) 23. Medium
uses CRF 28 and low uses 40 [39].

Figure 13. Test Dataset Size With Different Encoding Settings

were of short duration, e.g., just a few frames long, then

this method would be less effective, as sampling may lead

to many missed events (false negatives).

Can we use content-based filtering along with sampling

to further reduce bandwidth consumption? Figure 12 shows

results when running early discard on a sample of the frames.

This shows that for the same recall, we can reduce the

bandwidth consumed by another factor of 5 on average

over sampling alone. This effective combination can reduce

the average bandwidth consumed for our test videos to

just a few hundred kilobits per second. Furthermore, more

processing time is available per processed frame, allowing

more sophisticated algorithms to be employed, or to allow

smaller tiles to be used, improving accuracy of early discard.

One case where sampling is not an effective solution is

when all frames containing an object need to be sent to the

cloudlet for some form of activity or behavior analysis from

a complete video sequence (as may be needed for task T5).

In this case, bandwidth will not reduce much, as all frames

in the event sequence must be sent. However, the processing

time benefits of sampling may still be exploited, provided

all frames in a sample interval are transmitted on a match.

E. Effects of Video Encoding

One advantage of the DUMBDRONE strategy is that since

all frames are transmitted, one can use a modern video

encoding to reduce transmission bandwidth. With early

discard, only a subset of disparate frames are sent. These

will likely need to be individually compressed images, rather

than a video stream. How much does the switch from video

to individual frames affect bandwidth?

In theory, this can be a significant impact. Video encoders

leverage the similarity between consecutive frames, and

model motion to efficiently encode the information across a

set of frames. Image compression can only exploit similarity

within a frame, and cannot efficiently reduce number of

bits needed to encode redundant content across frames.

To evaluate this difference, we start with extracted JPEG

frame sequences of our video data set. We encode the frame

sequence with different H.264 settings. Figure 13 compares

the size of frame sequences in JPEG and the encoded video

file sizes. We see only about 3x difference in the data size

for the medium quality. We can increase the compression (at

the expense of quality) very easily, and are able to reduce

the video data rate by another order of magnitude before

quality degrades catastrophically.

However, this compression does affect analytics. Even at

medium quality level, visible compression artifacts, blurring,

and motion distortions begin to appear. Initial experiments

analyzing compressed videos show that these distortions

do have a negative impact on accuracy of analytics. Using

average precision analysis, a standard method to evaluate

accuracy, we see that the most accurate model (Faster-RCNN

ResNet101) on low quality videos performs similarly to the

less accurate model (Faster-RCNN InceptionV2) on high

quality JPEG images. This negates the benefits of using the

state-of-art models.

In this system, we pay a penalty of sending frames instead

of a compressed low quality video stream. This overhead

(approximately 30x) is compensated by the 100x reduction

in frames transmitted due to sampling with early discard.

In addition, the selective frame transmission preserves the

accuracy of the state-of-art detection techniques.

Finally, one other option is to treat the set of disparate

frames as a sequence and employ video encoding at high

quality. This can ultimately eliminate the per frame overhead

while maintaining accuracy. However, this will require a

complex setup with both low-latency encoders and decoders,

which can generate output data corresponding to a frame as

soon as input data is ingested, with no buffering, and can

wait arbitrarily long for additional frame data to arrive.

For the experiments in the rest of the paper, we only

account for the fraction of frames transmitted, rather than the

choice of specific encoding methods used for those frames.

VI. JUST-IN-TIME-LEARNING STRATEGY

A. Description

Just-in-time-learning (JITL) tunes the drone pipeline to

the characteristics of the current mission in order to reduce

transmitted false positives from the drone, and therefore

reduce wasted bandwidth. It is inspired by the cascade

architecture from the computer vision community [40], but

is different in construction. A JITL filter is a cheap cascade

filter that distinguishes between the EarlyDiscard DNN’s

true positives (frames that are actually interesting) and false
positives (frames that are wrongly considered interesting).

Specifically, when a frame is reported as positive by Ear-

lyDiscard, it is then passed through a JITL filter. If the

JITL filter reports negative, the frame is regarded as a false

positive and will not be sent. Ideally, all true positives from

EarlyDiscard are marked positive by the JITL filter, and

all false positives from EarlyDiscard are marked negative.

Frames dropped by EarlyDiscard are not processed by the

JITL filter, so this approach can only serve to improve

precision, but not recall.

Periodically during a drone mission, a JITL filter is trained

on the cloudlet using the frames transmitted from the drone.

The frames received on the cloudlet are predicted positive by

167

the EarlyDiscard filter. The cloudlet, with more processing

power, is able to run more accurate DNNs to identify true

positives and false positives. Using this information, a small

and lightweight JITL filter is trained to distinguish true

positives and false positives of EarlyDiscard filters. These

JITL filters are then pushed to the drone to run as a cascade

filter after the EarlyDiscard DNN.

True/false positive frames have high temporal locality

throughout a drone mission. The JITL filter is expected to

pick up the features that confused the EarlyDiscard DNN

in the immediate past and improve the pipeline’s accuracy

in the near future. These features are usually specific to the

current flight, and may be affected by terrain, shades, object

colors, and particular shapes or background textures.

JITL can be used with EarlyDiscard DNNs of differ-

ent cutoff probabilities to strike different trade-offs. In a

bandwidth-favored setting, JITL can work with an aggres-

sively selective EarlyDiscard DNN to further reduce wasted

bandwidth. In a recall-favored setting, JITL can be used with

a lower-cutoff DNN to preserve recall.

In our implementation, we use a linear support vector ma-

chine (SVM) [41] as the JITL filter. Linear SVM has several

advantages: 1) short training time in the order of seconds;

2) fast inference; 3) only requires a few training examples;

3) small in size to transmit, usually on the order of 50KB

in our experiments. The input features to the JITL SVM

filter are the image features extracted by the EarlyDiscard

DNN filter. In our case, since we are using MobileNet as

our EarlyDiscard filter, they are the 1024-dimensional vector

elements from the second last layer of MobileNet. This

vector, also called “bottleneck values” or “transfer values”

captures high-level features that represents the content of

an image. Note that the availability of such image feature

vector is not tied to a particular image classification DNN

nor unique to MobileNet. Most image classification DNNs

can be used as a feature extractor in this way.

B. Experimental Setup

We used Jetson TX2 as our drone platform and evaluated

the JITL strategy on four tasks, T1 to T4. For the test videos

in each task, we began with the EarlyDiscard filter only

and gradually trained and deployed JITL filters. Specifically,

every ten seconds, we trained an SVM using the frames

transmitted from the drone and the ground-truth labels for

these frames. In a real deployment, the frames would be

marked as true positives or false positives by an accurate

DNN running on the cloudlet since ground-truth labels are

not available. In our experiments, we used ground-truth

labels to control variables and remove the effect of imperfect

prediction of DNN models running on the cloudlet. In

addition, we used the true and false positives from all

previous intervals, not just the last ten seconds when training

the SVM. The SVM, once trained, is used as a cascade filter

running after the EarlyDiscard filter on the drone to predict

whether the output of the EarlyDiscard filter is correct or

not. For a frame, if the EarlyDiscard filter predicts it to

be interesting, but the JITL filter predicts the EarlyDiscard

filter is wrong, it would not be transmitted to the cloudlet. In

other words, following two criteria need to be satisfied for

a frame to be transmitted to the cloudlet: 1) EarlyDiscard

filter predicts it to be interesting 2) JITL filter predicts the

EarlyDiscard filter is correct on this frame.

C. Results

From our experiments, JITL is able to filter out more

than 15% of remaining frames after EarlyDiscard without

loss of event recall for three of four tasks. Figure 14 details

the fraction of frames saved by JITL. The x-axis presents

event recall. Y-axis represents the fraction of total frames.

The blue region presents the achievable fraction of frames

by EarlyDiscard. The orange region shows the additional

savings using JITL. For T1, T3, and T4, at the highest

event recall, JITL filters out more than 15% of remaining

frames. This shows that JITL is effective at reducing the false

positives thus improving the precision of the drone filter.

However, occasionally, JITL predicts wrongly and removes

true positives. For example, for T2, JITL does not achieve a

perfect event recall. This is due to shorter event duration in

T2, which results in fewer positive training examples to learn

from. Depending on tasks, getting enough positive training

examples for JITL could be difficult, especially when events

are short or occurrences are few. To overcome this problem

in practice, techniques such as synthetic data generation [42]

could be explored to synthesize true positives from the

background of the current flight.

VII. REACHBACK STRATEGY

Reachback strategy is designed for drones to take advan-

tage of their storage space. Today, enabled by inexpensive

storage, tele-operated drones are designed to store the entire

video footage from a flight on-board. In our live video

analytics setup, when portions of video feeds are streamed

back to cloudlets for analysis, the complete videos are stored

locally on the drones as authoritative sources. Furthermore,

the limited processing on the drone can generally only serve

to down-select the frames that may be useful to downstream

processing at the cloudlet. Our strategy is to tune the drone

processing in favor of recall, so that interesting events

and objects are not missed. As these algorithms are not

perfect, it is still possible that a few critical frames are not

transmitted. These frames will not be discarded, however,

and will be stored safely on board the drone. The essence

of the reachback strategy is to allow the cloudlet to fetch

additional frames from the drone storage when needed to

complete analysis.

This mechanism is particularly useful in the context of

activity detection, where a consecutive set of frames are

needed to accurately identify the actions in the scene, e.g.,

168

(a) T1 (b) T2

(c) T3 (d) T4

Figure 14. JITL Fraction of Frames under Different Event Recall

whether an elephant is flapping its ears. As early discard

at the drone is performed frame by frame, only a scattered

subset of the desired frames may be initially delivered to

the cloudlet. If analysis on these frames indicate the event

in question may have occurred, the cloudlet will request

that the missing frames be sent from the drone. With

the complete frame sequence, the incidence of the action

can be accurately determined. We note that the reachback

mechanism is useful in both an automated analytics context,

as well as with a human operator in the loop. For example,

a human observer may find the appearance or pose of an

individual in a frame to be unusual, and can request that the

complete video sequence preceding the suspicious frame to

be transmitted from the drone.

We evaluate the idea of reachback to a drone using a sim-

ple activity inference task (T5). Here, the goal is to identify

instances of people pushing or pulling large suitcases. We

use the test videos from the Okutama dataset, in which there

are 5 instances of a person pushing or pulling a suitcase-

like object. We use the EarlyDiscard filter trained for T1

as the EarlyDiscard filter in this experiment. As a rough

estimate, we assume 80% of event frames are needed for a

general activity detector to successfully identify an action of

pushing or pulling an object. In general, early discard alone

cannot deliver enough frames. On the cloudlet, we use the

successful detection of a person and a nearby suitcase-like

object to trigger reachback. Through manual inspection of

the test videos, we identify seven separate sequences where

the trigger condition will be satisfied. This manual inspection

could be replaced by activity recognition algorithms when

Figure 15. Effect of Reachback on bandwidth and recall

available. We use reachback to retrieve temporally nearby

frames that are missing, until the event has ended. We

compare action event detection accuracy and bandwidth

usage with and without the reachback mechanism.

Figure 15 shows that reachback can significantly improve

the event recall with a marginal increase in the bandwidth

usage. The dashed lines are baseline with only early discard,

while the solid lines are for the system with the reachback

mechanism. The blue lines indicate action event recall, based

on the accuracy model where the action is detected if at least

80% of the event frames are seen. The red lines show number

of frames transmitted. As we can see, with just a marginal

increase in bandwidth, event recall can be greatly improved

with reachback for all early discard cut-off thresholds. The

bandwidth increase is due to the frames transmitted from the

drone in response to the seven reachbacks (5 true positives,

2 false positives) triggered for this video sequence. Note

that if the early discard is extremely aggressive, then so few

frames reach the cloudlet that the reachback criteria may not

be satisfied, causing reduction in event recalls.

VIII. CONTEXT-AWARE STRATEGY

A. Description

The essence of this approach is to leverage unique at-

tributes of the current mission to improve the speed and

accuracy of video processing on the drone. By definition,

this approach is ad hoc in character and therefore hard to

generalize or automate. However, the wins can be significant.

As an illustrative example, consider searching for sur-

vivors in the ocean after a shipwreck. Suppose the standard

approach for detecting survivors in search and rescue mis-

sions involves detection of human faces and bodies (similar

to T1), or distinctive actions such as waving. These are

used as the basis of early discard at the beginning of the

mission. During the mission, as personnel review results

that are presented to them after cloudlet processing, they

169

(a) Motivating Image

(b) GUI to Define Color Filter

Figure 16. Example of Context-Aware Strategy

notice that all survivors are wearing flotation devices (life

jackets) that have a distinctive color. Against the blue-

green background of the ocean, detecting this color is a

fast, accurate, and computationally cheap way of detecting

survivors. Figure 16(a) gives an example of such a scene.

However this optimization is unique to this mission. On a

different mission that also involves a shipwreck, the life

jackets may be of a different color. Or, because of the

late evening timing of the mission and the consequent low

angle of the sun, too many false positives may arise from

reflections off the water if reddish-orange colors are used as

the basis of early discard.

By the classic metrics of machine learning, the use of such

heuristics is viewed as “overfitting” and therefore something

to be avoided at all costs. Yet, in practical terms and in

the narrow context of this mission, the heuristic offers

many advantages without compromising accuracy. On some

missions, the heuristic may even be more accurate than a

DNN. We consider it important to allow mission personnel

to take advantage of such context-aware optimizations.

As shown earlier in Figure 6, we support many pre-

installed filters on the drone to implement context-aware

early discard. These filters are parameterized, and the pa-

rameters (such as the specific color of the life jackets) can

be supplied at runtime over the wireless link. As discussed

Precision using

DNN (%)

Precision using

color filter (%)

Recall

(%)

Video 1 92.4 95.3 89.1

Video 2 51.9 76.1 90.0

Video 3 41.3 84.3 88.6

(a) Accuracy

Jetson Joule Nexus 6

DNN Color DNN Color DNN Color

Video 1

13

6.2

37

9.8

352

27.5

Video 2 6.3 9.7 26.3

Video 3 9.5 12.3 36.1

(b) Processing time (ms)

Figure 17. Detection Results on T3 Using Color Filters

earlier, the default filter is the union of a set of MobileNet

DNNs that have each been trained on a specific type of

object (e.g., human face, human body and raft). Other filters

can be activated at runtime.

Mission personnel can specify parameters to filters by

example, as shown in the GUI in Figure 16(b). This is done

by drawing bounding boxes around the relevant parts of

images that were presented after cloudlet processing. Filters

can be selectively activated or deactivated, and combined to

generate complex search predicates. They can be used on

the drone both for early discard of future video, as well as

re-examination of stored video. When the accuracy of the

uploaded filter is better than that of the default DNN filter,

a re-examination of stored video can yield hits that were

missed earlier. These new hits can be downloaded to the

cloudlet for further processing. The context-aware filter is

thus being used both for reachback from already-captured

video, as well as for early discard on future video.

B. Experimental Setup

To demonstrate the effectiveness of this strategy, we apply

it using a simple color filter for T3. In each raft search video,

we randomly pick a frame that contains a raft (true positive),

and obtain the color of the most distinctive region of the

raft. Using the hue, saturation, and value (HSV) color space

attributes of this region, we apply a color filter to all the

other frames of the video. If a significantly large area of

a frame passes this filter, the frame is marked as positive.

Otherwise, it is marked as negative.

C. Results

Figure 17 shows using this approach can both improve

accuracy and reduce computation on three representative

test videos in T3. For all three videos, the precision using

a color filter is better than the precision using a DNN.

The difference is modest for Video 1, but considerable for

Video 2 and Video 3. In other words, the context aware

170

approach is consistently more accurate. This improvement

in accuracy does not come at a sacrifice in speed. On the

contrary, Figure 17(b) shows that the the color filter is

significantly faster than the DNN, ranging from 2x to over

an order of magnitude faster depending on the device and

data set. These results show the high value of using context-

aware knowledge. What the DNN provides is generality,

combined with reasonable accuracy. At the beginning of

a mission, when little is known about the context-specific

search attributes of the target, the DNN is the only choice.

As the mission progresses, the early results may hint at the

attributes of a highly effective and cheap context-aware filter.

IX. DISCUSSION

The techniques presented in Sections V to VIII are

not mutually exclusive. Instead, they are designed to be

used collectively to form a mission-specific pipeline. The

EarlyDiscard technique employs on-board filters to select

interesting frames and suppress the transmission of mundane

frames to save bandwidth. In particular, cheap yet effective

DNN filters are trained offline to fully leverage the large

quantity of training data and the high learning capacities

of DNNs. Building on top of EarlyDiscard, JITL adapts

an EarlyDiscard filter to a specific mission environment

online. Throughout a flight, JITL continuously evaluates

the EarlyDiscard filter and reduces the number of false

positives by predicting whether an EaryDiscard decision is

made correctly. These two techniques together reduce the

total number of unnecessary frames transmitted. In addition,

some missions need consecutive frames instead of individual

images to do tasks such as activity recognition. Reachback

compensates for these scenarios when EarlyDiscard and

JITL are deployed. Once the cloudlet identifies an interesting

frame from the data sent back by the drone, nearby frames

are pulled from storage on the drone. Furthermore, either

an algorithm or a person in the loop can determine when to

trigger reachback. Besides reachback, the person in the loop

may also identify unique characteristics to create more ef-

fective context-aware filters to increase accuracy and reduce

on-board computation.

X. RELATED WORK

Interest in drones has exploded in the recent past, both in

industry and in the research community. Gartner [43] esti-

mates that the global market revenue for drones will exceed

$6 billion in 2017, and will grow to exceed $11 billion in

2020. The research literature also reflects growing interest in

drones. Bregu et al. [13] explored how the characteristics of

existing control logic and hardware could be used to create

a notion of reactive control of drones. Gowda et al. [44]

showed how the orientation of drones could be tracked using

multiple GPS receivers. Mao et al. [45] described an indoor

system in which a drone follows a user and records videos.

The work presented in this paper is disjoint from these

previous drone-centric research efforts. Our focus is on re-

ducing wireless transmission for live video from autonomous

drones in use cases such as search and rescue, surveillance,

and wildlife conservation. Wang et al. [8] shares our con-

cern for wireless bandwidth, but focuses on coordinating

a network of drones to capture and broadcast live sport

event. In addition, Wang et al [10] explored adaptive video

streaming with drones using content-based compression and

video rate adaptation. While we share their inspiration, our

work leverages characteristics of DNNs and explore human-

in-the loop to enable mission-specific optimization strategies

including reachback and context-awareness.

Much previous work on static camera networks and video

analytics systems explored efficient use of compute and net-

work resources at scale. Zhang et al. [46] studied resource-

quality trade-off under result latency constraints in video

analytics systems. Kang et al. [47] worked on optimizing

DNN queries over videos at scale. While they focus on

supporting a large number of computer vision workload,

our work optimizes for the first hop wireless bandwidth.

In addition, Zhang et al. [9] designed a wireless distributed

surveillance system that supports a large geographical area

through frame selection and content-aware traffic schedul-

ing. In contrast, our work uses drone moving cameras. We

explore techniques that tolerate changing scenes in video

feeds and strategies that can leverage the human operator.

Some previous work on computer vision in mobile set-

tings has relevance to aspects of our system design. Chen et

al. [48] explore how continuous real-time object recognition

can be done on mobile devices. They meet their design

goals by combining expensive object detection with com-

putationally cheap object tracking. Although we do not use

object tracking in our work, we share the resource concerns

that motivate that work. Naderiparizi et al. [37] describe a

programmable early-discard camera architecture for contin-

uous mobile vision. Our work shares their emphasis on early

discard, but differs in all other aspects. In fact, our work can

be viewed as complementing that work: their programmable

early-discard camera would be an excellent choice for our

drones. Lastly, Hu et al [36] have investigated the approach

of using lightweight computation on a mobile device to

improve the overall bandwidth efficiency of a computer

vision pipeline that offloads computation to the edge. We

share their concern for wireless bandwidth, and their use

of early discard using inexpensive algorithms on the mobile

device. However, their work is not in a drone setting and

has no counterpart to just-in-time learning, reachback, or

context-aware discard described in our work.

XI. CONCLUSION

The emergence of autonomous drones has the potential

to transform many domains. Today, progress is clouded by

regulatory and political uncertainty surrounding the use of

171

drones. We are confident, however, that these are temporary

inhibitors. This work looks ahead to a future when the use

of video sensing on autonomous drones is widespread, both

in day to day activities as well as in emergency situations.
In this paper, we address several difficult mobile comput-

ing challenges that arise in performing real-time video ana-

lytics on small autonomous drones. These challenges lie at

the intersection of wireless bandwidth, processing capacity,

result accuracy, and timeliness of results. To address these

challenges, we have developed an adaptive computer vision

pipeline for search tasks in domains such as search-and-

rescue, surveillance, and wildlife conservation. We explore

an early discard strategy to selectively send the most interest-

ing frames and reduce precious bandwidth between the drone

and a ground-based cloudlet. We propose additional strate-

gies including just-in-time learning, reachback, and context-

based filtering to further improve bandwidth efficiency. Our

experimental results show that this judicious combination of

drone-based processing and edge-based processing can save

substantial wireless bandwidth and thus improve scalability,

without compromising result accuracy or result latency. We

believe such a drone architecture can greatly improve the

scalability of search in terms of number of concurrent drones

in flight and in terms of the amount of operator attention

needed to monitor a swarm of drones.

ACKNOWLEDGEMENTS

We wish to thank our shepherd, Sanjay Rao, and the anonymous
reviewers for their guidance in strengthening this paper. This research
was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001117C0051 and by the National Science
Foundation (NSF) under grant number CNS-1518865. Additional support
was provided by Intel, Vodafone, Deutsche Telekom, Verizon, Crown
Castle, NTT, and the Conklin Kistler family fund. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the view(s) of their employers or the
above-mentioned funding sources.

REFERENCES

[1] Hulu, “Internet speed requirements for streaming HD and 4K
Ultra HD,” https://help.hulu.com/en-us/requirements-for-hd,
2017, Last accessed: May 16, 2017.

[2] LteWorld, “LTE Advanced: Evolution of LTE,” http://
lteworld.org/blog/lte-advanced-evolution-lte, August 2009,
Last accessed: Jan 11, 2016.

[3] C. Wiltz, “How an Autonomous Drone Flies
With Deep Learning,” https://www.designnews.com/
electronics-test/how-autonomous-drone-flies-deep-learning/
172264901156787, May 2017, Last accessed: Sept 12, 2018.

[4] D. Martin, “New generation of drones set to revolutionize
warfare,” https://www.cbsnews.com/news/60-minutes-
autonomous-drones-set-to-revolutionize-military-technology-
2/, August 2017, Last accessed: Sept 12, 2018.

[5] E. N. Barmpounakis, E. I. Vlahogianni, and J. C. Golias, “Un-
manned aerial aircraft systems for transportation engineering:
Current practice and future challenges,” International Journal
of Transportation Science and Technology, vol. 5, pp. 111–
122, 2016.

[6] J. Bateman, “China’s Launching Drones to Fight Back
Against Earthquakes,” Wired, January 2017.

[7] D. Hambling, “The next era of drones will be
defined by ’swarms’,” http://www.bbc.com/future/story/
20170425-were-entering-the-next-era-of-drones, April 2017.

[8] X. Wang, A. Chowdhery, and M. Chiang, “Networked drone
cameras for sports streaming,” in Proceedings of IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS), 2017, pp. 308–318.

[9] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and
S. Banerjee, “The design and implementation of a wireless
video surveillance system,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Network-
ing. ACM, 2015, pp. 426–438.

[10] X. Wang, A. Chowdhery, and M. Chiang, “SkyEyes: adaptive
video streaming from UAVs,” in Proceedings of the 3rd
Workshop on Hot Topics in Wireless. ACM, 2016.

[11] M. Satyanarayanan, “Fundamental Challenges in Mobile
Computing,” in Proceedings of the ACM Symposium on
Principles of Distributed Computing, Ottawa, Canada, 1996.

[12] Netflix Help Center, “How can I control how much data
Netflix uses?” 2016, Last accessed: Sept 12, 2018.

[13] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and
K. Whitehouse, “Reactive Control of Autonomous Drones,”
in Proceedings of MobiSys 2016, Singapore, June 2016.

[14] D. Hardawar, “Intel’s Joule is its most powerful
dev kit yet,” https://www.engadget.com/2016/08/16/
intels-joule-is-its-most-powerful-dev-kit-yet/, August
2016, Last accessed: Sept 12, 2018.

[15] NVIDIA, “The Most Advanced Platform for AI at the Edge,”
http://www.nvidia.com/object/embedded-systems.html, 2017,
Last accessed: Sept 12, 2018.

[16] Intel, “Intel Aero Ready to Fly Drone,” https:
//www.intel.com/content/www/us/en/products/drones/
aero-ready-to-fly.html, 2018, Last accessed: Sept 12,
2018.

[17] NVIDIA, “TEAL Drone,” https://developer.nvidia.com/
embedded/community/reference-platforms/teal-drone, 2017,
Last accessed: Sept 12, 2018.

[18] X. Zhang, Y. Wang, and W. Shi, “pcamp: Performance
comparison of machine learning packages on the edges,”
in USENIX Workshop on Hot Topics in Edge Computing
(HotEdge’18), 2018.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” arXiv preprint arXiv:1704.04861, 2017.

172

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in
European conference on computer vision. Springer, 2016,
pp. 21–37.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in
Advances in neural information processing systems, 2015, pp.
91–99.

[24] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Mur-
phy, “Speed/Accuracy Trade-Offs for Modern Convolutional
Object Detectors,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[25] DJI, Inc., “Lightbridge 2 — Professional Quality Live
Streaming From the Sky,” https://www.dji.com/lightbridge-2,
2017, Last accessed: November 19, 2017.

[26] J. Morse, “Alphabet officially flips on Project Loon
in Puerto Rico,” http://mashable.com/2017/10/20/
puerto-rico-project-loon-internet, October 2017, Last
accessed: Sept 12, 2018.

[27] V. Sankaran, “Google Xs ambitious Loon and Wing
projects graduate into independent companies,”
https://thenextweb.com/google/2018/07/12/google-
xs-ambitious-loon-and-wing-projects-graduate-into-
independent-companies, July 2018, Last accessed: Sept
12, 2018.

[28] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computinga key technology towards 5g,” ETSI
white paper, vol. 11, no. 11, pp. 1–16, 2015.

[29] Open Edge Computing Initiative, “Living Edge Lab,” http:
//openedgecomputing.org/lel.html, 2018, Last accessed: Sept
12, 2018.

[30] Saguna Networks, “Saguna open-ran mec platform,” https://
www.saguna.net/saguna-open-ran/, Last accessed: August 28,
2018.

[31] S. J. Vaughan-Nichols, “Canonical’s cloud-in-a-box:
The ubuntu orange box,” https://www.zdnet.com/article/
canonicals-cloud-in-a-box-the-ubuntu-orange-box/, 2015,
Last accessed: August 28, 2018.

[32] M. Barekatain, M. Martı́, H.-F. Shih, S. Murray,
K. Nakayama, Y. Matsuo, and H. Prendinger, “Okutama-
action: An aerial view video dataset for concurrent human
action detection,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2017,
pp. 2153–2160.

[33] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese,
“Learning social etiquette: Human trajectory understanding
in crowded scenes,” in European Conference on Computer
Vision, 2016.

[34] “YouTube Collection 1,” https://www.dropbox.com/sh/
zksp1pzc1ix5hlw/AAB3HEhx-yLAJVR1Q3HnFpsWa?dl=0,
2017.

[35] “YouTube Collection 2,” https://www.dropbox.com/sh/
3uly2qqwbzjasaa/AABiWSzPD-5uzmvCy3meqPKma?dl=0,
2017.

[36] W. Hu, B. Amos, Z. Chen, K. Ha, W. Richter, P. Pillai,
B. Gilbert, J. Harkes, and M. Satyanarayanan, “The Case for
Offload Shaping,” in Proceedings of HotMobile 2015, 2015.

[37] S. Naderiparizi, P. Zhang, M. Philipose, B. Priyantha, J. Liu,
and D. Ganesan, “Glimpse: A Programmable Early-Discard
Camera Architecture for Continuous Mobile Vision,” in Pro-
ceedings of MobiSys 2017, June 2017.

[38] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How trans-
ferable are features in deep neural networks?” in Advances in
neural information processing systems, 2014, pp. 3320–3328.

[39] L. Merritt and R. Vanam, “Improved rate control and motion
estimation for h. 264 encoder,” in IEEE International Con-
ference on Image Processing, 2007.

[40] P. Viola and M. Jones, “Robust Real-time Object Detection,”
in International Journal of Computer Vision, 2001.

[41] J. Friedman, T. Hastie, and R. Tibshirani, The elements of
statistical learning. Springer series in statistics, 2001, vol. 1,
no. 10.

[42] D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn:
Surprisingly easy synthesis for instance detection,” in The
IEEE international conference on computer vision (ICCV),
2017.

[43] Gartner, “Gartner Says Almost 3 Million Personal and Com-
mercial Drones Will Be Shipped in 2017,” February 2017,
Last accessed: Sept 12, 2018.

[44] M. Gowda, J. Manweiler, A. Dhekne, R. R. Choudhury, and
J. D. Weisz, “Tracking Drone Orientation with Multiple GPS
Receivers,” in Proceedings of MobiCom 2016, 2016.

[45] W. Mao, Z. Zhang, L. Qiu, J. He, Y. Cui, and S. Yun, “Indoor
Follow Me Drone,” in Proceedings of MobiSys 2017, June
2017.

[46] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,
P. Bahl, and M. J. Freedman, “Live video analytics at scale
with approximation and delay-tolerance.” in NSDI, vol. 9,
2017, p. 1.

[47] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia,
“Noscope: optimizing neural network queries over video at
scale,” Proceedings of the VLDB Endowment, vol. 10, no. 11,
pp. 1586–1597, 2017.

[48] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and
H. Balakrishnan, “Glimpse: Continuous, Real-Time Object
Recognition on Mobile Devices,” in Proceedings of ACM
SenSys, 2015.

173

