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Abstract—Modern CPUs have word width of 64 bits but
real data values are usually represented using bits fewer than
a CPU word. This underutilization of CPU at register level
has motivated the recent development of bit-parallel algorithms
that carry out data processing operations (e.g., filter scan)
on CPU words packed with data values (e.g., 8 data values
are packed into one 64-bit word). Bit-parallel algorithms fully
unleash the intra-cycle parallelism of modern CPUs and they
are especially attractive to main-memory column stores whose
goal is to process data at the speed of the “bare metal”. Main-
memory column stores generally focus on analytical queries,
where aggregation is a common operation. Current bit-parallel
algorithms, however, have not covered aggregation yet. In this
paper, we present a suite of bit-parallel algorithms to accelerate
all standard aggregation operations: SUM, MIN, MAX, AVG,

MEDIAN, COUNT. The algorithms are designed to fully leverage
the intra-cycle parallelism in CPU cores when aggregating words
of packed values. Experimental evaluation shows that our bit-
parallel aggregation algorithms exhibit significant performance
benefits compared with non-bit-parallel methods.

I. INTRODUCTION

A word is the unit of data that a CPU core can process
in one instruction. Modern CPUs have a typical word width
of 64 bits, meaning the circuits in a processor core is able to
simultaneously process 64 bits of information within one single
clock cycle. This abundant intra-cycle parallelism, however,
has been largely underutilized in data processing as most real
data values could be represented using bits fewer than a CPU
word. Therefore, when processing a, say, 7-bit attribute (e.g.,
an “age” attribute), normally each value is padded into a 64-
bit word using 0’s, wasting 64 − 7 = 57 bits per cycle.

Recently, there are studies [1], [2] about filter scan, or
simply scan, at the speed of the processing core. Their main
idea is to fully utilize the intra-cycle parallelism in a CPU core
when carrying out filter selection. Specifically, the techniques
in [2] are especially designed for main-memory column stores
[3], [4]. Multiple values (possibly encoded in compressed form
[5], [6], [7]) from the same column are packed into words
in memory and the words are organized into a layout that
facilitates parallel predicate evaluation (filtering) by the CPU
core1. Figure 1 shows such an example — eight values from
the same column are packed into a 64-bit word in memory.

This work is partly supported by the Research Grants Council of Hong
Kong (GRF PolyU 520413 and 521012) and a research gift from Microsoft
Hong Kong.

1For example, the l extendedprice attribute — the widest numeric attribute
in TPC-H, can be encoded in 24 bits. So at least two values can be packed
in a 64-bit CPU word.

Fig. 1. Eight values are packed into a 64-bit word in memory.

When evaluating a predicate (e.g., price < 88), the eight values
in the same word are evaluated in parallel within the same CPU
register. Since the values are packed into a processor word, it
is meaningless to directly evaluate the predicate on a word of
packed values using ALU instructions. For example, in Figure
1, it is meaningless to compare whether the 64-bit word, whose
plain value is (648355685335035999)10, is less than 88. To
carry out filter scan, a suite of bit-parallel algorithms is thus
introduced in [2]. Each bit-parallel algorithm essentially turns
a comparison operator (=, 6=, <,>,≤,≥,BETWEEN) into a
program of standard CPU instructions (e.g., logical AND (∧),
exclusive OR (⊕)) so that filter selections can be carried out
on words of packed values directly.

Main-memory column stores generally focus on analytical
queries, where aggregation is a common post-operation after
filter scan. The bit-parallel algorithms in [2], however, do
not cover aggregation. In this paper, we present a suite of
efficient bit-parallel algorithms to implement all standard ag-
gregation operations: SUM, MIN, MAX, AVG, MEDIAN,

COUNT. The goal of the algorithms is to efficiently carry out
bit-parallel aggregation on data filtered by a bit-parallel scan
in a main-memory column store. Once again, the challenge
is how to fully utilize the intra-cycle parallelism in CPU
cores when aggregating words of packed values. Same as
[2], our algorithms use no specialized but standard instruction
sets found in all modern CPU architecture (including at the
SIMD register level in most architecture): logical AND (∧),
logical OR (∨), exclusive OR (⊕), binary addition (+), binary
subtraction (−), negation (¬), multiplication (∗), and k-bit
left or right shift (←k or →k, respectively). Experimental
evaluation shows that our bit-parallel aggregation algorithms
exhibit significant performance gain compared with non-bit-
parallel aggregation methods. Furthermore, our algorithms can
integrate with SIMD instruction sets and multi-threading to
enjoy further speed-up.

The remainder of this paper is organized as follows:
Section II describes the preliminary and background informa-
tion. Section III presents our bit-parallel algorithms for each
aggregation function. Section IV contains our experimental
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Fig. 2. VBP. A data value has k = 3 bits. A word has w = 8 bits.

results. Related work is covered in Section V. Finally, Section
VI contains our concluding remarks.

II. BACKGROUND AND PRELIMINARY

In this section, we give a brief introduction to the two bit-
level main memory storage layouts and the bit-parallel scan
algorithms proposed in [2]. We have developed two versions
of bit-parallel aggregation algorithms, one for each storage
layout. The first layout, VBP (Section II-A), uses a bit-level
columnar data organization. The second layout, HBP (Section
II-B), packs values from a column into processor words like
Figure 1. The two layouts are designed for two different access
patterns. For easy understanding, Table I summarizes the most
frequently used symbols in this paper.

A. VBP: Vertical Bit Packing

The VBP storage format vertically packs the bits of a value
across multiple words. Figure 2 shows the basic VBP layout
under word width w = 8 bits and value width k = 3 bits. A
fixed-length segment is formed for every k continuous word in
the memory space. Each segment is a unit of data processed by
a bit-parallel algorithm. In VBP, each segment holds column
values from w tuples. Each value v stores its i-th bit in the
i-th word. In Figure 2, eight values are packed into three 8-bit
words, W1, W2, and W3, in segment S1.

During a predicate comparison, say, v = 4, the correspond-
ing bit-parallel algorithm for that comparison operator first
transposes the constant (i.e., value 1002 = 410) in the predicate
and packs the bits vertically into k words (see words Wc1, Wc2,
Wc3 in Figure 2). Then the algorithm carries out predicate
evaluation for a segment through k iterations. For the example
in Figure 2, in the first iteration the algorithm compares the
bits in word W1 with Wc1 and prunes values v1, v3, v4, v6,
and v7 because their most significant bits are 0’s, which are
different with Wc1 — the most significant bit of (100)2. The
result of a comparison is stored in a filter bit vector F . The i-
th bit in F indicates the result of applying the predicate on vi.
So, after this iteration, F is temporally (01001001)2, with 0’s
indicating values v1, v3, v4, v6, and v7 are not in the result. In
the second iteration, the algorithm compares the bits in word
W2 with Wc2 and further prunes values v2, v5, and v8 because
of the mismatch of the corresponding bits with the second bit
of (100)2. The algorithm iterates through all k words in a
segment, but it may stop early if all values are pruned. In
the example, the algorithm jumps to process segment S2 once

TABLE I. NOTATION TABLE

Symbol Meaning

Wi the i-th word in a segment/sub-segment

F filter bit vector

Gi the i-th word-group

Si the i-th segment

SSt the t-th sub-segment

M bit vector mask

v a data value in the column

w processor word width (bits)

n number of tuples

k number of bits to represent a value

τ the size of a bit-group (bits)

the second iteration on segment S1 has finished, because all
values v1 ∼ v8 have been pruned. Under VBP storage format,
there would not be any overflow problem because the filter
algorithms only use bitwise operations like AND, OR and
XOR.

B. HBP: Horizontal Bit Packing

The HBP storage format horizontally packs values from
a column into w-bit processor words. Figure 3a shows an
example. Each k-bit value vi is stored in a (k+1)-bit section
whose leftmost bit is used as a delimiter between adjacent
values of the same word. The delimiter bit is dedicated for
handling overflow and producing the filter bit vector. A word
can hold ⌊ w

k+1⌋ values. If w is not a multiple of k+1, 0’s are
right padded up to the word boundary. In HBP, a segment is
formed for every k+1 contiguous processor words in memory
space. In Figure 3a, eight values are packed into four 8-bit
words in a segment. The values are packed in a “column-first”
manner within a segment. For example, in segment S1, v1 is
packed to W1, v2 is packed to W2, but v5 is packed to W1.
The reason of that is to facilitate the generation of the filter
bit vector F .

During a predicate comparison, say, v < 4, the correspond-
ing bit-parallel algorithm for that comparison operator first
packs the constant in the predicate (i.e., value 4) repeatedly into
a word (see word Wc in Figure 3b). Then, the algorithm applies
a sequence of full-word instructions (e.g., exclusive OR ⊕,
logical AND ∧) to carry out the comparison to generate some
intermediate results. Finally, a filter bit vector F is generated
by shifting and applying logical OR to the intermediate results.
In Figure 3b, the first (most significant) bit of the filter bit
vector F indicates that v1 is less than 4.

C. Cache Line Optimization

The basic format of VBP and HBP however may waste
memory bandwidth if early stopping exists. Suppose that a
CPU cache line contains 3 words. So, in Figure 2, it is possible
that words W1, W2, and W3 are in the same cache line.
Skipping over W3 that has already been loaded into the CPU
cache with W1 and W2 results in wasted memory bandwidth.
So, the actual storage format clusters words into the contiguous
memory region called word-group.

Figure 4 shows an example of organizing eight 6-bit data
values (i.e., k = 6) into two word-groups G1 and G2. The bits
of value are split into bit-groups of size τ . In the example,
τ = 3, so, value v1 = 110 011 is split into ⌈k

τ
⌉ = 2 bit-groups.

The bit-groups of a value are packed to different words.
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Fig. 3. HBP. A data value has k = 3 bits. A word has w = 8 bits.

For VBP (Figure 4a), the first bit-group of v8 is vertically
distributed to the last bit of words W1, W2, and W3; and the
second bit-group of v8 is vertically distributed to the last bit
of words W4, W5, and W6. For HBP (Figure 4b), the first
bit-group of v1 is packed to word W1 whereas the second
bit-group of v1 is packed to word W2.

A word-group packs bit-groups into words of a continuous
memory space. For example, in Figure 4a, word-group G1

packs the first bit-group of all values together. So, during a
filter scan, if we can prune all values after scanning W1 ∼
W3 of segment S1, we can skip the remaining words of S1

and avoid bringing W4 ∼ W6 into the cache. In this way the
memory bandwidth could be used more judiciously.

In HBP, words that collectively contain all bits of a set of
data values form a sub-segment. In Figure 4b, words W1 and
W2 form a sub-segment SS1 because they collectively contain
all bits of values v1 and v5.

D. VBP versus HBP — A Remark

VBP and HBP are two orthogonal storage layouts. VBP
is more space efficient because it does not require an extra
delimiter bit for each value. However, VBP breaks a data value
into more words, so when reconstructing a value back to its
plain form, its performance is worse than HBP.

E. Evaluation of Filter Scan

Evaluations of complex predicates (e.g., predicates in-
volving different columns from a table) in a filter scan are
done by evaluating each simple predicate independently and
combining their filter bit vectors. For example, the predicate
R.a>4 AND S.b = 10 can be evaluated by (i) applying
BIT-PARALLEL-GREATERTHAN algorithm in [2] on col-
umn R.a, (ii) applying BIT-PARALLEL-EQUAL algorithm
in [2] on column S.b, and (iii) intersecting their filter bit
vectors.

III. BIT-PARALLEL AGGREGATION

The proposal in [2] has not covered any bit-parallel aggre-
gation algorithms. To evaluate aggregation queries like

Q1: SELECT SUM(X) FROM Y WHERE Z < 4

it was suggested to first carry out a bit-parallel filter scan to
obtain a filter bit vector F that indicates which tuples pass the
filter. Then, a non-bit-parallel methodology is used: for each
‘1’ in the filter bit vector F , its corresponding plain data value
v is reconstructed from the horizontal/vertical bit-packed data
and packed as a standalone 64-bit word. Afterwards, all those
words go through CPU to carry out aggregation in plain form.

The above non-bit-parallel implementation of aggregation,
however, has several drawbacks: (1) it exploits no intra-
cycle parallelism at all; (2) even worse, it has to burn many
instructions to reconstruct the data values back to their plain
form. Using the HBP formatted data in Figure 3 as an example.
Suppose that the filter bit vector F after a filter-scan v <

4 is (10110110)2 for segment S1. The plain data value is
reconstructed in four steps:

1) Identifies a value v from F that passes the filter: It starts
with the rightmost 1 in F . To extract v, we compute its
offset O in F by (i) F ⊕ −F , (ii) apply the POPCNT

bit-wise procedure2 to count the number of 1’s, (iii) add
1 to the count:

F = (10110110)2
(i) F ⊕−F = (11111100)2
(ii) POPCNT(F ⊕−F ) = (6)10
(iii) O = POPCNT(F ⊕−F ) + 1 = (7)10

Through these instructions, value v7 is the first value
identified to be passing the filter from F = (10110110)2.

2) Reconstruct the value of v by (i) modulo the offset O by
the number of words in a segment to locate the word Wv

that contains v; (ii) compute ⌊O/(k+1)⌋+1 to locate the
position of v in Wv; (iii) right shift by (⌊ w

k+1⌋−⌈O/(k+
1)⌉)(k + 1) bits and mask the word Wv to make v as a
full-word in plain:

O = POPCNT(F ⊕−F ) + 1 = (7)10
(i) 7 MOD 4 = (3)10

//found word W3 is holding v7

(ii) ⌊7/4⌋+ 1 = (2)10
//found v7 is the 2-nd value in W3

(iii) →(2−2)×4 W3 ∧ (00000111)2 = (00000010)2
//v7 in a full 8-bit word

3) Take away the reconstructed value v from F , by F =
F ∧ (F − 1):

F = (10110110)2
F := F ∧ (F − 1) = (10110100)2

4) Proceed to the next value in F that passes the filter: go
to Step 1 with the updated F from Step 3. Stop when
F = 0 (as Step 3 will unset the rightmost ‘1’ of F each
time).

2The POPCNT procedure stands for population count. It is a standard bit
manipulation procedure. In our experiments, we use the POPCNT instruction
provided by our Intel Haswell processor.
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Fig. 4. Cache Optimization. A data value has k = 6 bits. A word has w = 8 bits. The size of a bit group is τ = 3.

Aggregations are then either inlined within or carried out after
the reconstruction process. For example, SUM aggregation can
be done by inlining a running sum to accumulated the values
reconstructed at Step 2(iii).

From the above discussion, we see how non-bit-parallel
aggregations burn instructions by reconstructing the plain data
values. The overheads in VBP are even higher because the
bits of a value are distributed into more words, which further
increases the effort to reconstruct the values back to their plain
form. Of course, those overheads are negligible when the filter
is highly selective. However, many realistic analytic queries are
indeed not highly selective. For example, we found that almost
half (10 out of 22) of the TPC-H queries have selectivity of
0.01 or above. For those queries, we observe that, if filter
scans are carried out using the bit-parallel algorithms in [2],
then the non-bit parallel implementation of aggregation takes
from 30% (Q6: 0.6/2.1) to 99% (Q1: 85.6/86) of the whole
query execution (see the shaded cells in Table II).

In the next section, we present our bit-parallel algorithms
to implement various aggregate operators under the VBP and
HBP storage layouts. Our algorithms take as input a filter bit
vector returned by a bit-parallel scan operator and compute
the aggregate without reconstructing the values back to their
plain form. We regard our algorithms as additional access
methods for the optimizer to consider when the queries are
not highly selective. Those queries deserve attention not only
because they are common in real workloads (e.g., 10 out
of 22 TPC-H queries), but also because of their generally
longer execution time — obviously they are the ones that
zoom the bad side of the database product and being able
to significantly reduce their running times would be much
more important than reducing the running times of the already
fast running ones. We remark that our bit-parallel solutions
are orthogonal to solutions using specialized hardware such
as GPU [8], [9]. That is, our algorithms can be applied
at the register level of GPU. Our discussion assumes the

aggregations work on unsigned integers3. NULL values can be
handled using the techniques in [10]. To accelerate analytical
processing, recent work suggests denormalizing the database
(e.g., pre-joining all tables as a wide table) to eliminate join
processing and materializing extra columns (e.g., an attribute
in a different sort order as a column, expression results over
multiple attributes as a column) to facilitate grouping, complex
expression computation, and selection [11], [12]. We follow
those approaches in this paper. Therefore, operations such as
joins and group-by could be transformed into simple scans,
and aggregations could directly work on a single column.
Such approach has been evaluated to be practical and efficient
in main memory analytical databases while the extra space
requirement is not an issue because of the use of compressions
in columnar [11].

A. Bit-Parallel Aggregation Under VBP

In this section, we present the bit-parallel algorithms for
implementing COUNT, SUM, MIN, MAX, MEDIAN under the
VBP storage format. The AVG aggregation is simply imple-
mented by dividing the sum with the count.

[COUNT] Computing the COUNT aggregation is straightfor-
ward — we simply add up the number of 1’s in the filter bit
vector F for each segment S. In terms of implementation, we
use the POPCNT procedure to count the number of 1’s in a bit
vector. Then, the overall count aggregate is computed by:

∑

segment S

POPCNT(S.F )

Let n be the number of values. Since a segment generally
contains w values, the number of segments is given by n

w
.

Hence the complexity of COUNT is O( n
w
).

3Other numeric types like signed integers and floating point with limited
precision can be mapped to unsigned integers with a scaling scheme [7].
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[SUM] Notice that a value v of k bits can be expressed as

v =
k∑

j=1

v(j) × 2k−j , where v(j) means the j-th bit of v (the

1-st bit is the most significant bit). Take values v1 and v2 in
Figure 2 as an example:

v1 = 0012 = 0× 22 + 0× 21 + 1× 20

v2 = 1112 = 1× 22 + 1× 21 + 1× 20

Hence, the sum of w values can be computed in the form:

w∑

i=1

vi =

w∑

i=1

k∑

j=1

v
(j)
i × 2k−j

=
k∑

j=1

(
w∑

i=1

v
(j)
i )× 2k−j

The sum of Segment S1 in Figure 2 can then be computed
through (bits of v1 are especially underlined to ease under-
standing):

v1 + v2 + v3 + . . .+ v8
= 001 + 111 + 010 + . . .+ 111

= (0 × 22 + 0× 21 + 1× 20)
+ (1× 22 + 1× 21 + 1× 20)
+ (0× 22 + 1× 21 + 0× 20)
+ . . .
+ (1× 22 + 1× 21 + 1× 20)

= (0 + 1 + 0 + . . .+ 1)× 22———–(*)
+ (0 + 1 + 1 + . . .+ 1)× 21

+ (1 + 1 + 0 + . . .+ 1)× 20

Especially, line (*) above is essentially counting the num-
ber of 1’s in word W1 and multiplying that count with 22.
The latter can be implemented with 2-bit left shift instruction.
Therefore, computing the sum over a segment in a bit-parallel

fashion can be done by
∑k

i=1 ←k−i POPCNT(Wi). For
segment S1, that is:

v1 + v2 + v3 + . . .+ v8
= ←2 POPCNT(W1)

+←1 POPCNT(W2)

+←0 POPCNT(W3)

=←2 (3)+←1 (5)+←0 (4)

= 26

Algorithm 1 shows our implementation of SUM. We
keep a temporary array bSum[1 . . . k] to accumulate the
POPCNT(Wi) across the segments. We process the data in
one word-group after another. For each word-group G, we
iterate over each segment S, and add the POPCNT of each
word S.Wi to the corresponding bSum[i] entry. For example,
when processing segment S2 in Figure 4a, the POPCNT of W7

(the 1-st word of S2) is added to bSum[1]. To compute the
SUM over the values that pass through a previous filter, we
intersect Wi with the filter bit vector F before the counting
and shifting (Line 5). By having the temporary array bSum,
we can carry out the shifts in the end (Line 6), reducing the
number of shifts to k in total instead of k per segment. The

Algorithm 1 Bit-Parallel SUM in VBP

1: Initialize bSum[1 . . . k] := 0: bit-wise sums
2: for each word-group G do
3: for each segment S in column C do
4: for each S.Wi in G do
5: bSum[i] := bSum[i] + POPCNT(S.Wi ∧ S.F )

6: sum =
k∑

i=1

←k−i bSum[i]

7: return sum

algorithm logically scans every word in the data exactly once.
The complexity of SUM is therefore O(nk

w
).

[MIN] Each segment in VBP contains w data values. MIN ag-
gregation relies on a bit-parallel procedure SLOTMIN (stands
for slot-wise minimum) that compares the w data values in a
segment Sx with another w data values in a segment Sy in a
slot-wise fashion and returns the minimum value of each slot.
Using the values in segment S1 and segment S2 in Figure 2
as an example, on plain value level, the SLOTMIN procedure
produces the result as follows:

S1 = {1, 7, 2, 1, 6, 0, 2, 7}

S2 = {1, 3, 2, 0, 0, 2, 2, 3}

SLOTMIN(S1, S2) = {1, 3, 2, 0, 0, 0, 2, 3}

That is, the i-th value in the result of a SLOTMIN procedure
is the minimum between the two i-th values in both segments.
With the SLOTMIN procedure, we can maintain a temporary
segment Stemp and iterate through each segment Sx to update
Stemp := SLOTMIN(Sx, Stemp). The final Stemp would then
contain the w smallest numbers across all segments.

The bit-parallel implementation of SLOTMIN(Sx, Sy) pro-
cedure requires the computation of a w-bit vector Mlt whose
i-th bit is 1 if the i-th value in Sx is less than the i-th value
in Sy or 0 otherwise. For example, the bit vector Mlt between
S1 and S2 is (00000100)2, meaning the 6-th slot of S1 (i.e,.
value 0) is less than that of S2 (i.e,. value 2). By having bit
vector Mlt, we can use that to pick the smaller value between
S1 and S2 on each slot by:

(Mlt ∧ Sx.Wi) ∨ (¬Mlt ∧ Sy.Wi)

So, for S1 and S2 in Figure 2, on bit-level,
SLOTMIN(S1, S2) works as follows:

SLOTMIN(S1, S2)
S1 S2 (Mlt ∧ S1.Wi) ∨ (¬Mlt ∧ S2.Wi)

W1 0100 1001 0000 0000 0000 0000
W2 0110 1011 0110 0111 0110 0011
W3 1101 0001 1100 0001 1100 0001

The result of the above bit-parallel SLOTMIN procedure,
of course, is interpreted vertically under VBP. For example,
the second bit of each word in SLOTMIN (underlined above)
collectively means (011)2, i.e., among the second slots in S1

and S2, the value (011)2 = 310 is the smaller one.

Algorithm 2 shows our implementation of MIN aggrega-
tion. We iterate through all segments (Lines 2–3) to obtain the
overall slot-wise minimum. The slot-wise minimum contains
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the w smallest numbers across all segments. Next, we simply
reconstruct these w values to plain form and return the
minimum one (Lines 4–6). Note that this step only reconstructs
a small constant number (i.e., w) of values, we found the cost
of this step is negligible. The overall cost of the algorithm is
therefore dominated by Lines 2–3, given by O(nk

w
).

In SLOTMIN, we use the BIT-PARALLEL-LESSTHAN

algorithm in [2] to obtain the bit vector Mlt (Line 9). Ad-
ditionally, to discard values that do not pass the filter F , we
intersect Mlt with F before finding the slot-min (Line 10).

Algorithm 2 Bit-Parallel MIN in VBP

1: Initialize Stemp: a running slot-wise minimum segment
2: for each segment S in column C do
3: Stemp := SLOTMIN(S, Stemp, S.F )

4: Reconstruct the values in Stemp to plain form
5: min := the minimum among the w reconstructed values
6: return min

7: procedure SLOTMIN(Sx, Sy , F )
8: Initialize Smin

9: Mlt := BIT-PARALLEL-LESSTHAN(Sx, Sy)
10: Mlt := Mlt ∧ F
11: for each word-group G do
12: for each word Wi of Sx, Sy in G do
13: Smin.Wi := (Mlt ∧ Sx.Wi) ∨ (¬Mlt ∧ Sy .Wi)
14: return Smin

[MAX] MAX aggregation is implemented like MIN aggrega-
tion. The worth noticing changes just include: (1) we need
a SLOTMAX procedure to compute the slot-wise maximum,
and (2) we leverage the BIT-PARALLEL-GREATERTHAN

procedure in [2] to obtain the bit vector Mgt.

[MEDIAN] We begin the explanation of computing MEDIAN
by taking segment S1 in Figure 2 as an example. Since segment
S1 has an even number of values, without loss of generality,
we look for the lower median, i.e., the 4-th smallest value in
the segment.

Our idea is to progressively determine the value of the
median bit by bit, from its most significant bit to its least
significant bit. The medianM should be a k-bit value. So, we
denote the i-th bit of the median as M[i]. To determine the
1-st bit of the median, i.e., M[1], we count the number of 1’s
in W1:

POPCNT(W1) = 3

This result translates into the fact that there are only 3
values in segment S1 greater than (100)2 = (4)10. As we are
currently looking for the 4-th smallest value in the segment,
we assert that (i) the median must be smaller than 4 and (ii)
values with 1 in their first bit in W1, i.e., v2, v5, and v8, are
not the answer. Furthermore, by (i) we establish the first bit
of the median as 0, i.e., M[1] = 0, so as to ensure it has a
value smaller than 4.

Next, we proceed to determine the second bit of the
median, i.e., M[2], by working on w2. As such, we count
the number of 1’s in W2 ∧ ¬W1:

POPCNT(W2 ∧ ¬W1) = 2

This result translates into the fact that there are only 2
values in segment S1 greater than (010)2 = (2)10, despite
values v2, and v5, and v8 (by ∧¬W1) . As we are currently
looking for the 4-th smallest value in the segment, we assert
that (i) the median should have a value in [2, 4), and (ii) values
with 1 in the second bit in ¬W1 ∧W2, i.e., v3 and v7, are the
median candidates. So by (i), we can assert M[2] = 1.

Finally, we proceed to determine the last bit of the median,
i.e., M[3], by working on W3. As such, we count the number
of 1’s in W3 ∧W2 ∧ ¬W1:

POPCNT(W3 ∧W2 ∧ ¬W1) = 0

This result translates into the fact that both candidate values
v3 and v7 have 0’s in their last bit. It also tells us that the last
bit of the median must be 0, i.e., M[2] = 0. So, all together
the median is (010)2.

Algorithm 3 Bit-Parallel MEDIAN in VBP

1: Initialize u := COUNT(∗): the number of candidates
2: Initialize r := ⌊u/2⌋: the rank of (lower) median
3: Initialize M := 0: the running result of median
4: for each segment S in column C do
5: S.V := S.F : the candidate bit vector
6: for each word-group G do
7: for each word Wi of all segments do
8: c :=

∑

segment S:S.V 6=0

POPCNT(S.V ∧ S.Wi)

9: if u− c < r then ⊲ the i-th bit must be 1.
10: M[i] := 1
11: r := r − (u− c)
12: u := c
13: for each segment s in column C do
14: s.V := s.V ∧ s.Wi

15: else ⊲ the i-th bit must be 0.
16: M[i] := 0
17: u := u− c
18: for each segment s in column C do
19: s.V := s.V ∧ ¬s.Wi

20: return M

Algorithm 3 shows our implementation of MEDIAN. We
initialize a candidate bit vector V to each segment as F to hold
the median candidates (Lines 4–5). Then we iterate through
the word-groups. Within each word-group, we process the first
word in each segment in order to determine the first bit ofM,
and then we process the second word in each segment, and
so on. In this way, we examine the i-th bits of all data for
i := 1 . . . k. During each iteration, after we have determined
the current i-th bit of the median is 1 (Line 9) or 0 (line 15),
we update the candidate set V . Accordingly, we also update
the number of candidates (u) and the target’s rank (r) in the
candidate set. Since the candidate bit vector S.V becomes
more and more sparse (i.e., containing fewer 1’s) when the
algorithm proceeds, we can possibly skip POPCNTing a whole
segment by testing S.V 6= 0 (Line 8), thus saving some
POPCNT instructions. Note that Algorithm 3 essentially solves
any r-selection problem, i.e., finding the r-th smallest value in
a list, by controlling the value of r. The algorithm complexity
is similar to SUM in that it asymptotically scans each data word
once. The complexity of the algorithm is O(nk

w
).

B. Bit-Parallel Aggregation Under HBP

In this section, we present the bit-parallel algorithms for
implementing aggregation under the HBP storage format. We
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note that the implementation of COUNT under HBP is identical
to the implementation under VBP because COUNT aggregation
simply counts the number of 1’s in the filter bit vector. Similar
to VBP, the implementation of MAX here is a straightforward
adaption of MIN, so we omit it for brevity. Of course, the AVG
aggregation is still implemented by dividing the sum with the
count. So, in the following, we only focus on SUM, MIN, and
MEDIAN.

[SUM] Notice a value in HBP is split and distributed into
B = ⌈k

τ
⌉ bit-groups. To reconstruct a value, we can carry out:

v =

B∑

g=1

←(B−g)τ (v.bg)

Here, v.bg means the g-th bit-group of v. For instance, in
Figure 4b, we have v1.b1 = (110)2, v1.b2 = (011)2 and
v1 =←3 (1102)+←0 (0112).

Then, the sum over all values is:

∑

i

vi =
∑

i

B∑

g=1

←(B−g)τ (vi.bg)

=

B∑

g=1

←(B−g)τ (
∑

i

vi.bg)

Note that
∑

i

vi.bg is essentially the sums of the in-

word-sum of all words in the g-th word-group. Consider
the word-group G1 in Figure 4b as an example. The in-
word-sum of word W1 is (110)2 + (101)2. Suppose there
is a procedure IN-WORD-SUM for computing the in-word-
sum of a word, then for word-group G1,

∑

i

vi.b1 equals to
∑

i=1,3,5,7,... IN-WORD-SUM(Wi).

We now present the details of implementing the IN-

-WORD-SUM procedure. Our proposed algorithm is inspired
by the Gilles-Miller method for sideways addition [13]. To
illustrate, we use a 32-bit word W as an example (w = 32,
k = 6, τ = 3):

W = 0 000
︸︷︷︸

0

0 001
︸︷︷︸

1

0 010
︸︷︷︸

2

0 011
︸︷︷︸

3

0 100
︸︷︷︸

4

0 101
︸︷︷︸

5

0 110
︸︷︷︸

6

0 111
︸︷︷︸

7

So, for W , its in-word-sum is 0 + 1 + ... + 7 = 28. To
compute the in-word-sum from W , we have to carry out four
instructions:

1) Compute the pair-wise sum on W by W := W+→τ+1

(W ):

W := W+→4 (W ) =

0000
︸︷︷︸

0

0001
︸︷︷︸

0+1

0011
︸︷︷︸

1+2

0101
︸︷︷︸

2+3

0111
︸︷︷︸

3+4

1001
︸︷︷︸

4+5

1011
︸︷︷︸

5+6

1101
︸︷︷︸

6+7

2) Remove the redundant pair-wise sums by
W := W ∧ 0τ+11τ+1 . . . 0τ+11τ+1 (Note that we use
exponentiation to denote bit repetition, e.g., 1502 =

1111100, 001k = 00 11 · · ·11
︸ ︷︷ ︸

k

):

W := W ∧ 04140414 . . . 0414 =

0000 0001
︸︷︷︸

0+1

0000 0101
︸︷︷︸

2+3

0000 1001
︸︷︷︸

4+5

0000 1101
︸︷︷︸

6+7

3) Add each pair-wise sum to the sums on its left by W :=
W ∗ 02τ+11 · · · 02τ+11:

W := W ∗ 071 · · · 071 =

0001 1100
︸ ︷︷ ︸

0+1+...+6+7

0001 1011
︸ ︷︷ ︸

2+3+...+6+7

0001 0110
︸ ︷︷ ︸

4+5+6+7

0000 1101
︸ ︷︷ ︸

6+7

4) Right shift by w−2(τ+1) bits to get the answer in place:

W :=→24 (W ) =

0000 0000 0000 0000 0000 0000 0001 1100
︸ ︷︷ ︸

0+1+...+6+7

Algorithm 4 shows our implementation of SUM in HBP. We
iterate through all sub-segments (Lines 2–6) to accumulate the
in-word-sum for each word-group. SSt.Wi in Line 6 means
the word of sub-segment SSt that falls in word-group Gi. As
we need to take into account the filter result F , we use the
procedure GET-VALUE-FILTER(SSt, F ) to obtain a filter
mask M for that specific sub-segment before computing its
in-word-sum (Line 4).

Specifically, the procedure
GET-VALUE-FILTER(SSt, F ) returns a value filter for
the t-th sub-segment in segment S (Lines 15–18). That value
filter could be used to wipe out values in a word that are not
in the filter. Using Figure 4b as an example again. Suppose
we have a filter bit vector F = 1101 0110, indicating that
v7 passes the filter but v3 does not, in sub-segment SS3.
Therefore, when working on word W5 = 0 111

︸︷︷︸

v3.b1

0 101
︸︷︷︸

v7.b1

in

sub-segment SS3, GET-VALUE-FILTER(SSt, F ) carries
out the following:

1) Prepare a delimiter filter Md, where the delimiter bits
indicate which values in that sub-segment pass the filter.
It works by (←t−1 F )∧ 10τ · · · 10τ (Line 16). For word
W5 in sub-segment SS3 in Figure 4b:

Md := (←2 F ) ∧ 1000 1000 = 0000 1000

2) Now, the delimiters in Md show that v7 passes the filter
but v3 does not. Next, we create a mask M to extract
the values that passes the filter by M := Md− →τ (Md)
(Line 17). So, we get:

M := Md− →3 (Md) = 0000 0111

By having that filter M , when carrying out the in-word-sum
(Line 6), we apply the filter M to W5:

W5 ∧M = 0 000 0 101
︸︷︷︸

v7.b1

In the above, we see the value of v3 is wiped out from word
W5 and would not contributed to the sum. Lastly, we add the
the bit-group-wise sums together with proper shifts (Line 7) to
obtain the final result. As HBP storage requires extra delimiter
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bits, the number of sub-segment per segment is τ+1, while the
number of bit-groups is k

τ
. The complexity of the algorithm is

slightly higher than that of VBP: O(nk(τ+1)
wτ

).

Algorithm 4 Bit-Parallel SUM in HBP

1: Initialize Gi.sum := 0, i = 1 . . . B: partial sum for each bit-
group

2: for each segment S in column C do
3: for each sub-segment SSt in S do
4: M := GET-VALUE-FILTER(SSt, S.F )
5: for each word-group Gi do
6: Gi.sum := Gi.sum+ IN-WORD-SUM(SSt.Wi ∧M)

7: sum :=
B∑

i=1

←(B−i)τ Gi.sum

8: return sum
9: procedure IN-WORD-SUM(W )

10: W := W+→τ+1 (v)
11: W := W ∧ 0τ+11τ+10τ+11τ+1 . . . 0τ+11τ+1

12: W := W ∗ 02τ+1102τ+11 . . . 02τ+11
13: W :=→w−2(τ+1) (W )
14: return W
15: procedure GET-VALUE-FILTER(SSt, F )
16: Md := (←t−1 F ) ∧ 10τ10τ . . . 10τ

17: M := Md− →τ (Md)
18: return M

[MIN] MIN aggregation on HBP can be carried out in a way
similar to MIN aggregation on VBP (Section III-A). Specifi-
cally, it relies on a bit-parallel procedure SUB-SLOTMIN that
computes the slot-wise minimum between two sub-segments.
Using sub-segment 1 (SS1) and sub-segment 2 (SS2) in Figure
4b as example, SUB-SLOTMIN(SS1, SS2) is:

SS1 =







0 110 0 101
0 011
︸ ︷︷ ︸

v1=51

0 100
︸ ︷︷ ︸

v5=44







SS2 =







0 001 0 111
0 000
︸ ︷︷ ︸

v2=8

0 010
︸ ︷︷ ︸

v6=58







SUB-SLOTMIN(SS1, SS2) =

{
0 001 0 101
0 000
︸ ︷︷ ︸

8

0 100
︸ ︷︷ ︸

44

}

To find the global minimum, we maintain a temporary sub-
segment SStemp and iterate through each sub-segment SSx to
update SStemp := SUB-SLOTMIN(SSx, SStemp). After that,
SStemp will have w

τ+1 values and the final answer can be
easily found by reconstructing those values back to the plain
form. For w = 64, τ = 3, this last step only reconstructs 16
values back to their plain form, so the overhead is negligible.

The implementation of SUB-SLOTMIN procedure is simi-
lar to the implementation of SLOTMIN in VBP (Section III-A).
It also requires the computation of a w-bit vector Mlt whose
the i-th delimiter bit in Mlt is 1 if the i-th slot of SS1 is
less-than the i-th slot of SS2. For the example above, Mlt of
SUB-SLOTMIN(SS1, SS2) is 0000 1000, meaning the first
slot of SS1 (i.e., 51) is not less than that of SS2 (i.e., 8) while
the second slot of SS1 (i.e., 44) is less than that of SS2 (i.e.,
58). Moreover, we need to transform Mlt into a mask M so as
to extract the slot-wise minimum from the two sub-segments.
So, on bit-level, SUB-SLOTMIN(SS1, SS2) works as follows:

SUB-SLOTMIN(SS1, SS2)
SS1 SS2 (M ∧ SS1.Wi) ∨ (¬M ∧ SS2.Wi)

W1 0110 0101 0001 0111 0001 0101
W2 0011 0100 0000 0010 0000 0100

Algorithm 5 shows our implementation of MIN in HBP.
We iterate through all sub-segments to obtain the overall slot-
wise minimum in SStemp (Lines 2–5). To take into account the
filter bit vector F , for each sub-segment SSt, we again prepare
a delimiter filter Md (Line 4) and pass that together with
two sub-segments to the procedure SUB-SLOTMIN. Inside
the procedure, we intersect Md with Mlt (Line 12) before
updating SSmin. Hence the values not in the found set will
not be updated into SStemp. The overall complexity of MIN

is O(nk(τ+1)
wτ

).

Algorithm 5 Bit-Parallel MIN in HBP

1: Initialize SStemp: temp slot-wise minimum sub-segment
2: for each segment S in column C do
3: for each sub-segment SSt in segment S do
4: Extract delimiter filter: Md :=←t−1 (S.F )∧ 10τ . . . 10τ

5: SStemp := SUB-SLOTMIN(SSt, SStemp,Md)

6: Reconstruct the values in SStemp to plain form
7: min := the minimum among the w

τ+1
values

8: return min
9: procedure SUB-SLOTMIN(SSx, SSy , Md)

10: Initialize SSmin

11: Mlt := BIT-PARALLEL-LESSTHAN(SSx, SSy)
12: Mlt := Mlt ∧Md

13: M := Mlt− →τ (Mlt)
14: for each word-group Gi do
15: SSmin.Wi := (M ∧ SSx.Wi) ∨ (¬M ∧ SSy .Wi)
16: return SSmin

[MEDIAN] Without loss of generality, we again look for the
lower median. Our idea is to progressively determine the value
of the median bit-group by bit-group. The median M should
be a k-bit value, divided into ⌈k

τ
⌉ bit-groups. So, we denote

the i-th bit-group ofM asM.bi. For the example in Figure 4,
k = 6 and the size of a bit-group τ = 3. So, M.b1 and M.b2
refer to the three most and the three least significant bits of
the median M, respectively.

To determine M.b1 and M.b2, we build histograms.
Specifically, we have designed a procedure BUILD-

-HISTOGRAM to build a cumulative histogram using every
distinct bit-group as the bins. For the first word-group G1 in
Figure 4b, if we only focus on segment S1, we have Step 1
as follows:

Step 1 Step 2

bin member freq
cumul’

freq member freq
cumul’

freq
000 0 0 0 0

001 v
(1)
2 1 1 v

(2)
4 1 1

010 v
(1)
8 1 2 0 1

011 0 2 0 1

100 0 2 v
(2)
5 1 2

101 v
(1)
4 , v

(1)
5 , v

(1)
7 3 5 0 2

110 v
(1)
1 1 6 v

(2)
7 1 3

111 v
(1)
3 , v

(1)
6 2 8 0 3

As we are looking for the 4-th smallest value in the
segment, from the histogram, we can assert that : (i) the median
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is among v4, v5, and v7; (ii) the three most significant bits of
the median, i.e., M.b1 must be (101)2; (iii) the median is the
2-nd smallest among v4, v5, and v7.

The next step is to examine the second word-group G2 so
as to determine M.b2. As such, we first exclude all values
except v4, v5, and v7 and then build the histogram (see Step
2 above). According to (iii) above, we are essentially looking
for the 2-nd smallest value. Through the histogram, we can
thus determine M.b2 = 1002.

Algorithm 6 shows our implementation of MEDIAN of
HBP. We initialize a candidate bit vector V to each segment
as F to indicate median candidates. Then we determine the
value of median M bit-group by bit-group (Lines 5–11). For
each word-group Gi, we compute the histogram over the i-
th bit-group of all candidates (Line 6). With the histogram we
can identify the correct i-th bit-group value ofM (Lines 7–8).
The median’s rank (r) is updated to reflect its ranking among
the remaining candidates (Line 9). The next step is to update
the candidate bit vector V of each segment (Lines 10–11), so
that only tuples with the desired bit-group value (e.g., 101 in
our example) are examined in the next round. To implement
that, we use the BIT-PARALLEL-EQUAL procedure in [2].

The procedure BUILD-HISTOGRAM takes as input a
word-group Gi and returns histogram (array) HIST of all
values’ i-th bit-group. It iterates through all sub-segments. For
each sub-segment, it extracts the delimiter filter Md (refer to
Step 1 of GET-VALUE-FILTER in Section III-B) belonging
to that sub-segment (Line 19) and then examines the slots one
by one (Lines 20–23). Similar to Algorithm 3, we may skip
processing a whole segment by testing S.V == 0 (Line 16–
17). Since the number of slots per word is given by w

τ+1 , the

resulted complexity of the algorithm is O(nk
τ
).

We note that the histogram has 2τ entries. So, in practice,
when storing the data with bit-group, the size of the histogram
is taken into account when selecting the value of τ so as to
ensure the histogram can fit in the cache.

IV. EVALUATION

We ran our experiments on a machine with a 3.40 GHz Intel
i7-4770 quad-core CPU, and 16GB DDR3 memory. Each core
has 32KB L1i cache, 32KB L1d cache and 256KB L2 unified
cache. All cores share an 8MB L3 cache. The CPU supports
AVX2 instruction set that operates on 256-bit SIMD registers.
We compare our bit-parallel (BP) aggregation algorithms with
the non-bit-parallel (NBP) aggregation approach mentioned in
the beginning of Section III. Both approaches take as input a
filter bit vector F and return an aggregate value. All algorithms
were implemented in C++ and compiled using g++ 4.9 with
optimization flag -O3.

A. Micro-Benchmark Evaluation

We evaluate the performance by varying (1) the selectivity,
(2) the value width, and (3) the data size in this evaluation.
The default data size, value width, CPU word width and
selectivity are one billion tuples, k = 25, w = 64 and 0.1,
respectively. The bit-group size τ was empirically determined,

Algorithm 6 Bit-Parallel MEDIAN in HBP

1: Initialize r = ⌊COUNT(∗)/2⌋: the (lower) median’s rank
2: Initialize M = 0: the median
3: for each segment S in column C do
4: S.V := S.F
5: for each word-group Gi do
6: Histogram HIST = BUILD-HISTOGRAM(Gi)

7: bin := argmin
i

i∑

j=0

HIST [j] ≥ r

8: M.bi := bin

9: r := r −
bin−1∑

j=0

HIST [j]

10: for each segment S in column C do
11: S.V := S.V ∧ BIT-PARALLEL-EQUAL(Gi, bin)
12: return M
13: procedure BUILD-HISTOGRAM(Gi)
14: Initialize histogram HIST [0 . . . (2τ − 1)] := 0
15: for each segment S in column C do
16: if S.V == 0 then
17: break
18: for each sub-segment SSt in segment S do
19: Md := (←t−1 S.V ) ∧ 10τ . . . 10τ

20: for i := 1 . . . w
τ+1

do
21: if the i-th delimiter in Md is 1 then
22: v := the i-th slot of SSt.Wi

23: HIST [v] + +

24: return HIST

according to [2]4. We report only the performance of SUM,
MIN/MAX, and MEDIAN as the implementation of COUNT is
straightforward and the performance of AVG is the sum of SUM
plus COUNT. Following [2], we use a benchmark query like
Q1 (Section III) to conduct the experiments. In this micro-
benchmark evaluation, we ran experiments using a single
thread. We have profiled our algorithms using Intel’s VTune
profiler (https://software.intel.com/en-us/intel-vtune-amplifier-
xe). We observed an average CPI (cycles per instruction) of 0.5
and less than 20% CPU cycles are stalled due to L3 cache miss
on average. Therefore, we conclude our algorithms are CPU
bound and optimizing the aggregation phase is worth doing.

Varying Selectivity Recall that the non-bit-parallel (NBP)
aggregation methods burn instructions by reconstructing data
values that pass the filter whereas our bit-parallel (BP) ag-
gregation algorithms avoid that. In this experiment, our goal
is to study how would the improvement of our BP aggrega-
tion methods over the NBP aggregation methods get affected
when fewer/more tuples pass the filter. Figure 5 shows the
speed-up of the aggregation phase using our BP aggregation
methods versus using the NBP aggregation methods in terms
of number of cycles-per-tuple. The number of processor cycles
is measured using the RDTSC instruction. We remark that the
cycles per tuple reported in our experiments is equivalent to
the wall clock time, that also implies the overall running time

4In [2], the optimal τ was 4 for VBP. We adopted that in our experiment
because we also found the same optimal value in our empirical experiments.
The authors of [2] found that using bit-group was not fruitful under HBP
and they thus set τ = k (i.e., use no bit-group). However, we found that
bit-group was actually helpful when the programs were carefully optimized.
Furthermore, we found that the optimal τ for different k and w values on HBP
can actually be analytically determined. Hence, in this paper, we adopted the
optimal τ values found by our analytical technique. Note that such optimal
value improves the performance of both the baseline methods and our methods,
so it is a fair comparison. Readers interest in that analytical equation and the
program optimizations are referred to [14].
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Fig. 5. Varying selectivity vs. Cost of aggregation
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Fig. 6. Varying value width vs. Cost of aggregation

of the algorithms, but not only the CPU costs. We varied the
selectivity from 0.01 (selective) to 1. It shows that our BP
approach offers significant speed-up over the NBP methods
and the speed-up increases with the selectivity. For example,
at selectivity 0.1, the NBP methods are shown to use 4×,
8.5×, and 2.6× cycles more than our BP methods when
carrying out SUM, MIN/MAX, and MEDIAN, respectively. The
speed-up over NBP methods for MIN/MAX is higher than for
SUM and MEDIAN because MIN/MAX can enjoy early-stopping
when values are pruned. In contrast, SUM intrinsically needs
all values and thus no early-stopping. Similarly, MEDIAN

is well-known as a holistic measure where the computation
requires the entire data set. Therefore, it also cannot enjoy
early stopping as MIN and MAX as do.

Varying Value Width Bit-parallel algorithms have a property
that their running time basically decreases when more values
can be packed into a word (i.e., a higher degree of parallelism).
In this experiment, our goal is to study how the value width
k impacts the performance of our methods. Figure 6 shows
the cycles-per-tuple of NBP aggregation methods and our BP
aggregation methods under the default data size (1 billion
tuple) and default selectivity (0.1) during the aggregation
phase. The value width k was varied from 2 bits to 50 bits.
We can see that our BP aggregation methods outperform the
NBP methods under all value widths. Generally, all methods
consume more cycles when the value width increases because
of the decrease in parallelism. HBP-based algorithms, be it
a BP method or a NBP method, have the property of one
iteration per τ -bits. VBP-based algorithms, in contrast, have
the property of one iteration per bit. That explains why the
increase under HBP is milder than the increase under VBP
in Figure 6. Finally, in HBP, we can still achieve certain
parallelism for k ≥ w/2 because of bit-groups. Specifically,
when k ≥ w/2, without bit-groups, HBP-based solutions
will downgrade to the naive format (one data item per word)
and gain no benefit from bit-parallelism and early stopping.
However, with bit-groups, long values are split up such that

parallelism still applies.

Varying Data Size In this experiment we aim to see how
our BP algorithms scale according to the data size. We
varied the data size from one to four billion tuples. Basically
our complexity analysis for each BP algorithm has shown
that our methods scale linearly with the data size. Figure 7
confirms that. Furthermore, we see from the figure that our
BP algorithms can provide absolute time improvement over
the NBP algorithms up to 10 seconds (for MIN/MAX), which
is significant to main-memory query processing.

B. Multi-threading and SIMD Acceleration

We have also implemented multi-threading and SIMD
acceleration for our algorithms. For multi-threading, we used
four threads with each pinned to a physical core of our
CPU and let each thread process a partition of data. Multi-
threading is associated with synchronization overheads though.
For example, in VBP-MEDIAN, all threads must synchronize
their access to the global counter c after each iteration (see
Line 8 in Algorithm 3). Multi-threading is implemented with
OpenMP.

For SIMD acceleration, we exploit the AVX2 instruction
set in our CPU. The SIMD code is written using intrinsics. For
VBP, it simply views 256-bit SIMD registers as 256-bit CPU
words, because its algorithms use only bitwise instructions
such as AND, OR, XOR. Thus, a VBP segment now contains
256 values. For HBP, it relies on shifts and additions. SIMD
shifts and additions can operate on four 64-bit banks in
parallel, but not the 256-bit word as a whole. Thus, we run four
instances of 64-bit algorithms in the 256-bit SIMD registers.
As a result, we process four segments in parallel and each seg-
ment is self-contained in its 64-bit boundary. We leveraged the
vectorized instructions whenever possible. For example, when
appropriate, we used the _mm256_cmpgt_epi8 instruction
to compare 32 pairs of 8-bit values at the same time.

Figure 8 shows the speed-up of our BP algorithms by en-
abling multi-threading and/or SIMD acceleration. The shaded
bars show the speed-up of our BP algorithms by enabling both
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Fig. 7. Varying data size vs. Cost of aggregation
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Fig. 8. Speed-up over single-threaded bit-parallel implementation by multi-
threading and SIMD

multi-threading and SIMD acceleration. We see a speed-up
from 2.2× to 8.4× overall.

The black bars in Figure 8 show the speed-up of our BP
algorithms by enabling multi-threading. We see that enabling
multi-threading generally makes our BP algorithms to run
about 2.1× to 3.8× faster. The speed-up cannot reach 4×
because there are synchronization overheads in using multi-
threading.

The white bars in Figure 8 show the speed-up of our BP
algorithms by enabling SIMD acceleration. We see that SIMD
generally makes our BP algorithms run up to 3.2× faster. It is
generally better than the marginal benefit, 10% speed-up, of
using SIMD reported in [2]. Nevertheless, the speed-up cannot
reach 4×. One reason is that SIMD instructions generally
consume more cycles per instruction (around 1.5×) than their
non-SIMD counterparts [2]. Another reason is that not every
instruction in 64-bit generic ALU has its 256-bit counterpart in
SIMD. For example, at the moment AVX2 has not yet provided
a 256-bit POPCNT instruction. Therefore, a 256-bit POPCNT
is essentially translated into to four serial 64-bit POPCNT
calls. Consequently, the extra parallelism of SIMD cannot be
fully unleashed, especially when our BP algorithms rely on
POPCNT. This also explains why the speed-up of using SIMD
in HBP is greater than in VBP because our BP algorithms
use POPCNT more often in VBP than in HBP. Nevertheless,
we believe this POPCNT issue will be resolved after the future
SIMD instruction set includes the 256-bit POPCNT instruction.

C. TPC-H Evaluation

Lastly, we evaluate the overall effectiveness of our algo-
rithms using TPC-H benchmark at scale factor 10GB. 10 out
of 22 TPC-H queries have selectivity higher than 0.01, but we
discard Q4 because it involves only straightforward COUNT
aggregation. We follow [11], [12] so that complex queries can
be transformed into simple filter scans and simple aggregation.
The filter scans are implemented using bit-parallel algorithms
in [2].

Table II shows the experimental results. We see that by
using our bit-parallel algorithms, the cycles (time) spent on
aggregation can be reduced by 28.1% (HBP) and 55.0%
(VBP) on average (see the bold lines in the table). So now,
with our bit-parallel algorithms, the aggregation operations
are no longer much slower than the bit-parallel scanning
operators. Overall, with our bit-parallel algorithms, the total
query execution cost can be reduced by 20.4% (HBP) and
44.4% (VBP) on average. The significant time reduction for
those long queries (e.g., from 86 cycles down to 2.4 cycles
for Q1) especially matches our goal of reducing the running
times of long queries.

V. RELATED WORK

Recently, there is an increasing number of studies attempt
to take advantage of modern hardware to speed up query
processing. One line of work is to offload some operators to
the graphics processing unit (GPU) when processing queries
[15], [8], [9], [16]. A GPU contains many SIMD multi-
processors, providing intrinsic massive parallelism. It also
possesses a large device memory and has high on-chip memory
bandwidth. The development of GPGPU (General Purpose
GPU) languages in recent years such as NVIDIA CUDA
has made general programming using GPU much simpler.
However, the potential of utilizing GPU may be hurdled by
the slow communication between GPU and CPU via PCI bus.
Hence, it requires special attention when designing algorithms
on GPU. Typical relational operations like selection, sort and
join on GPU have been studied in [8], [9]. It is reported
that computational expensive operators like joins can benefit
significantly from the parallelism of GPU.

Another line of work is to leverage the SIMD instruc-
tion set in modern processors so as to parallelize database
operations [17], [18], [19], [20], [21]. An SIMD register is
typically 128/256 bits long. The processor can execute a
single instruction stream on multiple n-bit operands, where
n = 8, 16, 32, 64, etc.

There is another line of work that exploits multi-core
architecture in modern CPUs to parallelize aggregation. For
example, multi-threaded aggregation on modern multi-core
processor is studied in [22], [23], [24]. Their challenge is to
tackle resource contention among the increasing number of
threads.

To some extent, the studies mentioned above can be
classified as “inter-word” parallelism, as they typically process
one data item stored in one word. In contrast, Blink [6],
[25], [1], BitWeaving (the collective term for performing scans
on HBP and VBP storage layout) [2], and this paper drill
down to the level of “intra-word” parallelism. Both Blink
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TABLE II. EXPERIMENTS ON TPC-H QUERIES (10GB DATA; MULTI-THREADED; SIMD-ENABLED).

Query Q1 Q6 Q7 Q9 Q10 Q11 Q14 Q15 Q20

Selectivity 0.986 0.019 0.301 0.053 0.019 0.041 0.012 0.037 0.150

HBP Reported cost is cycles per tuple, equivalent to running time.

BP filter scan 0.4 0.4 1.5 1.5 0.8 0.8 0.4 0.4 1.0 1.0 0.1 0.1 0.8 0.8 0.8 0.8 0.9 0.9

Aggregation (NBP | BP) 21.7 2.3 0.6 0.6 2.1 0.8 0.9 0.7 0.6 0.6 1.1 1.0 0.5 0.5 0.7 0.7 0.5 0.2 Avg

Aggregation improvement* 89.4% 0.7% 62.5% 22.9% 0.3% 12.3% 3.0% 3.4% 58.4% 28.1%

Total cost (NBP | BP) 22.1 2.7 2.1 2.1 2.9 1.6 1.3 1.1 1.7 1.7 1.2 1.1 1.3 1.3 1.4 1.4 1.3 1.1 Avg

Overall improvement* 87.7% 0.2% 45.8% 15.1% 0.1% 11.4% 1.2% 1.6% 20.4% 20.4 %

VBP Reported cost is cycles per tuple, equivalent to running time.

BP filter scan 0.4 0.4 1.1 1.1 0.6 0.6 0.4 0.4 0.8 0.8 0.0 0.0 0.6 0.6 0.6 0.6 0.7 0.7

Aggregation (NBP | BP) 85.6 2.0 0.7 0.6 8.0 0.8 2.1 0.6 0.7 0.6 1.6 0.8 0.6 0.6 1.2 0.6 1.1 0.2 Avg

Aggregation improvement* 97.7% 20.2% 90.1% 72.0% 20.8% 50.3% 6.4% 51.3% 86.3% 55.0%

Total cost (NBP | BP) 86.0 2.4 1.8 1.6 8.7 1.4 2.4 0.9 1.5 1.4 1.7 0.8 1.2 1.2 1.8 1.2 1.9 0.9 Avg

Overall improvement* 97.3% 8.2% 83.5% 61.5% 10.1% 49.2% 3.2% 33.7% 53.1% 44.4%

*Improvement = (NBP time - BP time)/NBP time ×100%

and BitWeaving are general solutions to parallelizing scan
operations on commodity CPUs. IBM Blink system is a row-
store whereas BitWeaving assumes a column-store. Indeed,
the VBP layout in BitWeaving was inspired by bit-slice [10],
[26] whereas the HBP layout in Bitweaving was pioneered by
Lamport [27]. Once again, we remark that Blink, Bitweaving,
and our techniques here in this paper can integrate with the
three lines of hardware-specific techniques above to enjoy extra
speed-up, as exemplified by our experiments above (Section
IV-B).

VI. CONCLUSION

Aggregation is an important operation in main memory an-
alytical processing engine. Recently, there are studies to speed
up filter scan in main memory databases by fully utilizing the
intra-cycle parallelism in modern CPUs [1], [2]. In this paper,
we showed that, with efficient intra-cycle parallel scan, ag-
gregations SUM, MIN, MAX, AVG, MEDIAN and COUNT

would become the bottleneck if they do not leverage the CPU’s
intra-cycle parallelism accordingly. Therefore, in this paper,
we contribute a suite of efficient aggregation algorithms that
also exploit intra-cycle parallelism. Our algorithms use no
specialized but standard instruction sets found in all modern
CPU architecture. Furthermore, our algorithms can integrate
with SIMD instruction sets and multi-threading to enjoy further
speed-up. Experiment results show that our algorithms yield
significant speed up to all aggregate operations.
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